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Abstract

Empirical	evidences	have	supported	the	large	heterogeneity	in	the	timing	of	individuals'	activities.	Moreover,	computational	analysis	of	the	agent-based	models	has	shown	the
importance	of	the	activation	regimes.	In	this	paper,	we	apply	four	different	asynchronous	updating	schemes	including	random,	uniform,	and	two	state-driven	Poisson	updating
schemes	on	an	agent-based	opinion	dynamics	model.	We	compare	the	effect	of	these	activation	regimes	by	measuring	the	appropriate	opinion	clustering	statistics	and	also
the	number	of	emergent	extremists.	The	results	exhibit	both	qualitative	and	quantitative	difference	between	different	activation	regimes	which	in	some	cases	are
counterintuitive.	In	particular,	we	find	that	exposing	the	radical/moderate	agents	to	more	encounters	decreases/increases	the	average	number	of	extremists	compared	to	other
types	of	activation	regimes.	The	results	also	show	that	no	specific	updating	scheme	can	always	outperform	the	others	in	reaching	to	consensus.
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	Introduction

1.1 	The	term	"opinion	dynamics"	refers	to	a	wide	range	of	models	in	the	social	psychology,	sociology,	physics,	and	computer	science	literatures.	These	models	differ	in	terms	of	the
phenomena	of	interest,	the	underlying	assumptions	and	theories,	the	activation	regimes,	and	updating	rules.	Usually,	the	objective	of	opinion	dynamics	models	is	to	explore
collective	behaviors	such	as	reaching	to	consensus	(Huet	et	al.	2008),	emergence	of	extremists	(Deffuant	2006),	survival	and	spreading	of	minority	opinions	(Xie	et	al.	2011),
and	distributional	properties	of	the	opinions	(Alizadeh	&	Cioffi-Revilla	2014).

1.2 	Generally,	there	are	two	main	categories	of	opinion	dynamics	models.	First	are	models	that	are	based	on	statistical	physics	(Weidlich	1971;	Sznajd-Weron	2000;	Galam	2005).
The	underlying	concept	of	these	models	is	a	"transition	rate"	between	different	states	of	a	social	system,	and	opinion	dynamics	is	considered	in	terms	of	order-disorder
transitions	(Kurmyshev	et	al.	2011).	Castellano	et	al.	(2009)	review	and	summarize	the	statistical	physics	models	which	have	been	applied	in	social	dynamics	problems
including	the	opinion	dynamics.	The	second	category	of	models	is	agent-based	models.	Here,	the	emerging	behavior	of	the	social	system	is	studied	through	the	interactions	of
independent	and	autonomous	agents.	That	is,	no	specific	goal	is	set	for	the	agents.

1.3 	Agent-based	modeling	is	the	fast	growing	approach	to	study	the	collective	behavior	of	large	number	of	people	in	social	science	(Cioffi-Revilla	2002).	Many	agent-based	models
have	been	proposed	for	the	dynamics	of	opinions	by	capturing	the	social	psychology	theories.	In	any	agent-based	model,	three	modeling	specifications	should	be	explicitly
determined	(Page	2005):	1)	updating	rules,	2)	interaction	structure,	and	3)	activation	regime.	Agent's	updating	rules	can	be	simple	or	sophisticated.	As	Axtell	(2001)	discusses,
one	class	of	agent-based	models	consists	of	large	number	of	agents	with	relatively	little	cognitive	capacity.	In	this	type	of	models,	the	agents	are	very	simple	meaning	they	have
small	number	of	attributes	and	methods.	But	the	complexity	arises	from	the	huge	number	of	interactions	between	agents.	Conversely,	the	second	class	of	agent	models	includes
small	number	of	agents	with	relatively	high	cognitive	ability.

1.4 	The	interaction	structure	is	the	interconnections	between	agents	(Axtell	2001)	and	can	be	represented	in	space	or	in	networks	that	encode	geographic,	sociological,	or	feature
based	differences	(Riolo	et	al.	2001).	Finally,	the	activation	regime	(a.k.a.	"timing"	or	"scheduling"	or	"updating")	is	the	timing	of	activation.	That	is,	the	order	on	which	the	agents
get	called	and	take	their	action	(Page	2005).	Some	researchers	use	"updating	scheme"	for	the	same	concept,	but	following	Axtell	(2001)	and	Page	(2005),	we	prefer	to	use
"activation	regime"	as	"updating"	may	get	confused	with	the	concept	of	updating	rules	in	agent-based	models	which	we	have	discussed	above.	Moreover,	we	call	it	"regime"
because	it	is	independent	of	the	agents'	opinions	and	indeed	is	a	parameter	of	the	model	(Urbig	et	al.	2008).

1.5 	Studies	on	cellular	automata	and	agent-based	models	have	shown	that	different	activation	regimes	produce	different	results	in	some	models	(Axtell	2001;	Radax	&	Rengs
2010;	Fates	&	Chevrier	2010).	In	general,	some	of	the	reported	steady-states	are	artifact	of	the	synchronization	of	agents'	activation.	For	example,	Huberman	and	Glance
(1993)	find	that	by	using	asynchronous	updating,	the	interesting	patterns	exhibited	in	Nowak	and	May's	(1992)	work	disappears.	In	another	study,	Bersini	and	Detours	(1994)
show	that	for	modified	versions	of	the	game	of	life	and	an	immune	network	model,	random	asynchronous	updating	leads	to	stability	rather	than	long	transients.	Moreover,	in	the
model	about	the	emergence	of	firms,	Axtell	(2001)	finds	that	while	using	random	activation	show	dependence	between	growth	rate	and	firm	size,	changing	this	activation
regime	to	uniform	activation	exhibits	a	reverse	dependence	between	the	two	variables.	In	addition	to	computational	studies	on	the	effect	of	activation	orders,	empirical
evidences	have	also	supported	the	large	heterogeneity	in	the	timing	of	individual	activities	(Barabási	2005;	Oliveira	&	Barabási	2005;	Malmgren	et	al.	2009;	Karsai	et	al.	2011;
Fernández-Gracia	et	al.	2011).

1.6 	Given	the	potential	influence	of	the	activation	regime	on	the	qualitative	and	quantitative	properties	of	the	agent-based	models,	it	is	surprising	that	most	of	the	proposed
computational	opinion	dynamics	models	are	based	on	random	or	uniform	updating.	In	fact,	the	impact	of	applying	different	activation	regimes	has	received	little	attention	in	the
opinion	dynamics	literature.	We	are	aware	only	of	Urbig	et	al.'s	(2008)	work	on	the	effect	of	the	number	of	the	agents	that	interact	at	each	time	step.	This	is	a	crucial	gap	in	the
study	of	opinion	dynamics	models	because	we	know	that	opinion	dynamics	models	usually	have	large	number	of	simple	agents	and	as	Axtell	(2001)	argues	in	such	models	the
model	specifications	(i.e.	updating	rules,	interaction	structure,	and	activation	regime)	has	greater	effect	on	the	behavior	of	the	model	compared	with	the	model	that	consists	of
few	sophisticated	agents.

1.7 	In	this	paper	we	want	to	investigate	how	applying	different	agent	activation	orders	may	affect	the	behavior	and	final	output	of	an	opinion	dynamics	model.	In	doing	so,	we	apply
four	different	asynchronous	activation	regimes	on	the	2-dimensional	opinion	dynamics	model	proposed	by	Huet	et	al.	(2008)	and	compute	the	appropriate	quantitative	measures
of	opinions.	It	is	important	to	quantitatively	compare	the	effect	of	different	timing	orders	because	in	some	cases	the	qualitative	results	might	be	indistinguishable	at	aggregate
level.	The	number	of	emergent	opinion	clusters	is	a	common	measure	in	this	sense	and	have	been	used	by	many	opinion	dynamics	researchers	(Urbig	2003;	Urbig	et	al.	2008;
Huet	et	al.	2008;	Mäs	et	al.	2014).	We	also	compute	and	report	the	maximum	cluster	size	and	the	number	of	minority	clusters.

1.8 	Our	forth	measure	of	interest	is	the	phenomenon	of	drifting	toward	opinion	extremes	called	Radicalization.	A	challenging	question	in	radicalization	is	that	why	and	how
extremists	become	extremists.	Several	researchers	have	tried	to	model	the	emergence	and	propagation	of	extremists	in	agent-based	opinion	dynamics	models	by	adding	some
extremist	agents	in	the	population	with	extreme	belief	but	much	lower	uncertainty	threshold	(Deffuant	et	al.	2002),	asymmetric	confidence	and	biased	confidence	(Hegselmann
&	Krause	2002),	examining	the	effect	of	network	topology	(Amblard	&	Deffuant	2004),	assigning	separate	uncertainty	thresholds	for	attraction	and	rejection	(Jager	&	Amblard
2005),	incorporating	the	tendency	of	adopting	the	prototypical	opinion	of	a	group	(Salzarulo	2006),	examining	the	striving	for	uniqueness	among	agents	(Mäs	et	al.	2010),	and
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introducing	open-	and	close-minded	agents	in	the	population	(Lorenz	2010).	This	paper	contributes	to	the	literature	of	radicalization	by	examining	the	heterogeneity	of	the	timing
of	individuals'	interactions.

1.9 	The	rest	of	the	paper	is	organized	as	follows.	In	section	2,	we	review	the	opinion	dynamics	under	bounded	confidence	and	describe	our	choice	for	our	modeling	purposes.	In
section	3	we	introduce	four	different	activation	regimes	used	in	the	agent-based	modeling	named	uniform,	random,	and	two	Poisson	activation	regimes.	Section	4	summarizes
simulations	that	show	how	the	difference	in	the	activation	regime	influences	the	qualitative	and	quantitative	properties	of	the	model.	Thereby	we	compare	the	statistics	of	opinion
clusters	and	the	number	of	extremists	for	various	values	of	modeling	parameters.	Finally,	section	5	concludes	the	paper.

	Agent-based	Opinion	Dynamics	Models

2-1-	Opinion	Dynamics	Models	Under	Bounded	Confidence

2.1 	One	of	the	most	well-known	category	of	agent-based	opinion	dynamics	model	is	the	Bounded	Confidence	(BC)	model	(Krause	1997,	2000).	The	term	"bounded	confidence"
was	coined	by	Krause	(1997)	and	since	after	there	have	been	two	well-known	opinion	dynamics	under	bounded	confidence	models	which	have	been	independently	proposed
by	Deffuant,	Weisbuch	and	others	(DW)	(2000)	and	Hegselmann	and	Krause	(HK)	(2002).	The	two	models	are	very	much	alike,	but	differ	mainly	in	their	communication
regimes	and	slightly	in	updating	mechanisms.	While	DW	model	considers	random	pairwise	encounters	at	each	time	step	in	which	agents	may	compromise	or	not,	the	HK	model
allows	agents	to	communicate	with	all	other	agents	and	adopt	the	average	opinion	of	those	who	fall	in	their	area	of	confidence.	For	a	survey	of	continuous	opinion	dynamics
under	bounded	confidence	models	see	Lorenz	(2007).

2.2 	The	BC	model	considers	the	opinion	as	a	continuous	variable	representing	by	a	real	number.	In	the	BC	model,	each	agent	has	an	opinion	and	an	uncertainty	associated	with	it.
Here	the	uncertainty	can	be	interpreted	as	the	extent	to	which	agents	are	open	to	adjust	with	others'	belief	during	the	encounters.	When	two	agents	are	interacting	with	each
other,	if	they	are	close	enough	in	their	opinions	(i.e.	their	opinion	difference	is	less	than	their	corresponding	uncertainties),	they	will	be	attracted	by	one	another	and	become
closer	in	their	opinions.	However,	if	the	difference	is	greater	than	their	associated	uncertainties,	they	will	ignore	each	other	and	nothing	changes.

2.3 	Several	other	extensions	of	the	BC	model	have	been	proposed	in	the	literature.	Researchers	have	tried	to	explore	different	aspects	and	applications	of	the	model	by	changing
the	initial	belief	distribution	(Jacobmeier	2006),	considering	multi-dimensional	beliefs	(Weisbuch	et	al.	2002;	Urbig	&	Malitz	2005;	Lorenz	2006),	imposing	heterogeneity	of
uncertainties	(Deffuant	et	al.	2002;	Weisbuch	et	al.	2005),	restricting	the	communications	in	a	social	network	structure	(Fortunato	2005;	Lorenz	&	Urbig	2007),	analyzing	the
effect	of	convergence	parameter	(Assmann	2004;	Lorenz	&	Urbig	2007);	including	the	rejection	or	differentiation	mechanisms	(Huet	et	al.	2008;	Kurmyshev	et	al.	2011);
considering	various	ways	of	averaging	(Hegselmann	&	Krause	2004);	implementing	different	communication	regimes	(Lorenz	&	Urbig	2007);	differentiating	between	attitude	and
opinion	(Urbig	2003);	and	analyzing	the	effect	of	intergroup	conflict	escalation	(Alizadeh	et	al.	2014)	.

2.4 	In	this	paper,	for	our	modeling	purpose,	we	choose	the	2-dimensional	bounded	confidence	model	with	rejection	mechanism	(2D	BC)	proposed	by	Huet	et	al.	( 2008).	In	an
effort	to	include	the	rejection	mechanism	in	the	DW	model,	Huet	et	al.	(2008)	propose	a	2-dimensional	BC	model	which	allows	the	agents	to	reject	each	other's	opinion	when
they	are	in	a	so	called	"dissonance"	situation.	This	agent-based	model	captures	the	homophily	principle	and	differentiation	mechanism.	We	will	discuss	this	model	and	its
underlying	theories	and	assumption	in	the	following	sub-section.

Table	1:	Summary	of	Model	Components	and	Parameters

Description Abbreviation Value/Range	of
Values/Equation

Reference

Agents Type Individuals Each	agent
represents	an
individual

– – –

Attributes
Opinion	1 The	opinion	of

agent	on	a
subject

x1 [-1,1] Huet	et	al.
(2008)

Opinion	2 The	opinion	of
agent	on	a
subject

x2 [-1,1] Huet	et	al.
(2008)

Uncertainty	1 Uncertainty
related	to
opinion	1

U1 [0,1] Huet	et	al.
(2008)

Uncertainty	2 Uncertainty
related	to
opinion	2

U2 [0,1] Huet	et	al.
(2008)

Methods: Attraction Agents	get
closer	in	one	or
two	opinion(s)

– Homophily

Differentiation Agents	shift
away	from	each
other	in	a	given
opinion	if	they
are	in	cognitive
dissonance
situation.

– Cognitive
Dissonance

Ignorance Agents	ignore
each	other	and
do	not	make
any	changes	in
their	opinions	if
they	are	far
enough	in	both
opinions.

– Cognitive
Dissonance

Parameters Modeling
Parameters Constriction

factor
Used	to	limit	the
convergence
velocity

μ 0.3 Huet	et	al.
(2008)

Intolerance
threshold

Conceptual
threshold	in
determining	the
cognitive
dissonance

δ 1,	1.5,	2	(Default	=	1) –
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situation
Global
Variables

Population Number	of
agents	in	the
model

– 1,000 –

Iterations Number	of	time
steps	in	each
run	of	the	model

– 700,000 –

Epsilon The	minimum
distance
between	agents
to	be
considered	in
the	same
opinion	cluster

ε 0.05 –

2-2-	Bounded	Confidence	Model	with	Rejection	Mechanism

2.5 	In	this	section	we	present	the	2D	BC	opinion	dynamics	model	(Huet	et	al.	2008).	The	model	has	been	developed	based	on	the	Cognitive	dissonance	theory	proposed	by
Festinger	(1957).	Cognitive	dissonance	is	a	psychological	conflict	that	occurs	when	there	is	an	inconsistency	between	two	or	more	beliefs	which	one	holds	simultaneously.
Cognitive	Dissonance	theory	suggests	that	dissonance	is	"psychologically	uncomfortable"	and	therefore	motivates	people	to	achieve	a	balanced	state.	That	is,	they	avoid
anything	that	increases	the	dissonance	and	thus	change	their	beliefs	in	a	way	that	reduces	the	perceived	dissonance.	For	instance,	one	plausible	way	to	reduce	the	dissonance
is	to	shift	away	from	those	who	possess	opposing	beliefs.	To	describe	the	formal	model,	let	us	consider	a	set	of	N	individuals	each	having:	1)	a	2-dimentional	vector	containing
x1	and	x2	representing	real	numbers	ranging	from	−1	to	+1,	reflecting	the	opinion	of	node	over	two	different	issues,	and	2)	a	2-dimentional	vector	containing	u1	and	u2
representing	by	real	numbers	between	0	and	1	reflecting	uncertainties	related	to	x1	and	x2	respectively.

2.6 	At	each	simulation	time	step,	instead	of	allowing	each	agent	to	interact	with	all	of	its	neighbors,	a	pair	of	individuals	is	randomly	selected	to	interact	and	update	their	opinions.
Here	they	condition	the	updating	process	based	on	the	values	of	opinions	and	uncertainties.	Suppose	that	agent	i	has	opinions	x1i	and	x2i	with	uncertainties	u1i	and	u2i,	and
agent	j	has	beliefs	x1j	and	x2j	with	uncertainties	u1j	and	u2j.	For	sake	of	simplicity,	the	assumption	is	that	all	nodes	have	similar	uncertainties.	Also	lets	assume	that	x1i(t)
represents	the	first	opinion	of	agent	i	at	time	step	t	and	μ	is	a	constriction	factor	used	to	limit	the	convergence	velocity.	The	assumption	is	that	μ	is	constant	and	equal	for	all
agents	throughout	the	simulation.	Finally,	let	δ	represents	the	"intolerance	threshold",	which	is	a	conceptual	threshold	in	determining	the	cognitive	dissonance	situation,	and
psign(.)	be	similar	to	sign	function,	except	that	it	returns	+1	if	the	argument	is	0.	Table	1	summarizes	the	model's	components	and	parameters.

Table	2:	Huet	et	al's	(2008)	Opinion	Dynamics	Model	Updating	Rules

2.7 	The	entire	updating	rules	are	summarized	in	Table	2.	Agent	i	compares	its	opinions	with	those	of	agent	j's	and	updates	its	opinions	according	to	updating	rules.	The	general
rule	is	that	agents	approach	each	other	if	they	are	close	enough	in	both	opinions	(equations	1	and	2	and	4).	Otherwise,	they	may	reject	and	shift	away	from	one	another	if	the
opinion	difference	is	significant	enough	to	trigger	the	dissonance	feeling	(equation	6).	The	movement	should	be	large	enough	to	resolve	the	dissonance.	Since	the	model	has
been	built	on	the	cognitive	dissonance	theory,	it	assumes	that	for	cases	in	which	two	agents	are	far	in	both	opinions,	there	is	no	dissonance	between	them	and	therefore	there
is	no	influence	from	one	to	another	and	they	simply	ignore	each	other	on	both	opinions	(equations	7	and	8).
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Activation	Regimes

3.1 	There	are	important	differences	between	the	manner	social	interactions	work	in	real	world	and	the	way	it	is	simulated	by	researchers.	These	disparities	in	some	cases	can	be
significant	enough	to	cast	doubt	on	the	results	of	the	computational	models	of	social	interactions	(Huberman	&	Glance	1993).	The	inter-event	time	distribution	of	individuals'
activities	is	one	of	the	influential	parameters	that	needs	to	be	addressed	in	computational	models.	In	general,	activation	regimes	are	categorized	to	synchronous	and
asynchronous	regimes.	While	synchronous	activation	regime	assumes	that	all	agents	are	simultaneously	activated	and	updated	at	each	time	step	of	the	simulation,	in
asynchronous	activation	regime	there	is	no	global	clock	that	causes	all	agents	to	update	their	state	at	the	same	time	(Huberman	&	Glance	1993).

3.2 	Asynchronous	updating	schedule	could	be	based	on	geography	in	which	the	order	of	activation	is	determined	according	to	agents'	spatial	characteristics.	One	example	could
be	that	agent	located	at	12	o'clock	activates	first	and	the	rest	proceeds	clockwise.	The	updating	schedule	could	be	state-dependent	in	which	agents	having	a	given	state	activate
first.	The	activation	regime	might	also	depend	on	the	incentives	of	agents.	That	is,	those	agents	who	benefit	the	most	by	activation	precede	the	others	(Page	1997).	In	general,
any	deterministic	or	biased	activation	regimes	are	plausible.	But	choosing	the	activation	scheme	that	fits	the	best	to	the	system	under	study	remains	a	modeling	challenge.	In
this	following,	we	describe	the	four	asynchronous	updating	schemes	including	uniform,	random,	and	two	Poisson	activation	regimes	(Axtell	2001).

3.3 	Uniform	activation	regime	creates	a	sequence	of	pairs	from	the	population	through	sampling	without	replacement.	The	pairs	update	their	state	when	they	were	activated.	One
turn	is	defined	as	activating	the	entire	population	(in	pairs)	exactly	once.	To	avoid	spurious	correlation	between	agents,	it	is	crucial	to	periodically	randomize	the	order	of	agent
activation.	That	is,	given	the	sequence	in	which	agents	are	serially	activated,	some	agents	should	be	repositioned	so	that	in	the	following	time	step	most	of	the	agents	have	at
least	one	new	neighbor.	Uniform	activation	should	be	applied	when	activating	all	agents	in	a	single	turn	is	empirically	or	behaviorally	reasonable	(Axtell	2001).

3.4 	Random	activation	involves	selecting	pairs	of	agents	from	the	population	with	replacement.	A	turn	is	defined	as	complete	when	a	full	population	has	been	activated,	or	after	n/2
pairs	have	been	selected.	Assuming	that	the	activation	probability	of	all	agents	is	equal,	the	distribution	of	the	inter-activation	times	of	the	agents	is	binomial	and	called	random
activation	(Axtell	2001).

3.5 	In	Poisson	activation	regime,	each	agent	has	its	own	clock	which	wakes	it	up	when	the	agent	is	to	be	updated	(Schönfisch	&	de	Roos	1999;	Axtell	2001).	In	this	sense,	the
activation	of	each	agent	is	independent	of	all	other	agents.	If	for	every	t	>	0	the	number	of	activations	in	the	time	interval	[0,	t]	follows	the	Poisson	distribution	with	mean	λt,	then
the	sequence	of	inter-arrival	times	(i.e.	the	waiting	times	of	the	clocks)	are	exponentially	distributed	with	mean	1/λ.	To	determine	the	timing	of	activations,	a	random	exponential
number	ti	with	parameter	λi	is	assigned	to	each	agent.	The	simulation	starts	with	the	smallest	of	these	numbers.	After	getting	updated,	the	agent	calculates	its	next	activation
time	according	to	 	where	 	is	the	new	assigned	exponential	random	number	with	parameter	 .	Then	the	model	again	looks	for	the	smallest	activation	time	and	updates
the	corresponding	agent.	Note	that	the	λi	can	be	constant	or	dynamic	over	the	simulation	period.

3.6 	Poisson	activation	regime	requires	the	determination	of	the	activation	rate,	λi,	for	each	agent.	Several	ways	are	possible	to	determine	the	value	of	λi.	In	this	paper,	we	introduce
a	state-driven	approach	in	which	the	agents'	timing	order	depends	on	their	opinions.	More	specifically,	we	consider	two	cases:	1)	agents	with	extreme	opinions	are	more	likely
to	be	activated	(Poisson-1),	and	2)	agents	with	moderate	opinions	are	more	likely	to	be	activated	(Poisson-2).	We	choose	to	make	λi	proportional	to	the	sum	of	the	absolute
values	of	agents'	opinions.	Thus,	for	the	former	case,	those	having	greater	total	opinion	activate	more	frequently	and	those	having	less	total	opinion	activate	at	a	slower	rate.
For	the	latter	case,	agents	having	total	opinion	closer	to	zero	have	more	activation	probability	and	agents	with	total	opinion	closer	to	2	have	smaller	chance	of	updating.	These
rates	were	normalized	at	the	beginning	of	a	turn	so	that,	on	average,	one	population	of	agents	would	be	activated	on	each	turn.

Simulation	Results

4.1 	In	this	section,	we	present	and	analyze	our	chosen	agent-based	simulation	results.	First	we	show	the	general	behavior	of	the	opinion	dynamics	model	according	to	four
different	activation	regimes	(i.e.	random,	uniform,	Poisson-1,	and	Poisson-2).	Next,	we	use	the	emergent	opinion	clusters'	statistics	and	the	number	of	extremists	to	compare	the
output	of	opinion	dynamics	model	according	to	different	activation	regimes.	Then,	we	run	the	sensitivity	analysis	on	the	quantitative	measures	by	varying	the	values	of	modeling
parameters	including	the	intolerance	threshold	δ,	the	opinion	uncertainty	U,	and	the	activation	regime.	Finally,	we	use	the	analysis	of	variance	(ANOVA)	test	to	statistically	test
the	significance	of	the	modeling	specifications.

4-1-	General	Comparison

4.2 	We	set	the	population	size	as	1000	agents,	each	having	two	opinions	x1	and	x2.	The	initial	opinions	are	randomly	assigned	to	the	agents	using	the	uniform	distribution	between
−1	and	1.	The	uncertainties	u1	and	u2	are	assumed	to	have	equal	values	and	held	constant	throughout	the	simulation.	Figure	1	compares	the	final	configuration	of	opinions
resulting	from	different	activation	regimes.	In	each	of	the	figures,	the	two	axes	represent	the	opinions	which	are	bounded	between	−1	and	1	and	each	dot	on	the	figure
represents	an	agent's	opinion.	All	other	variables	and	parameters	among	the	models	are	the	same	including	the	initial	opinions	and	uncertainties.	Therefore,	we	can	interpret
the	results	as	the	effect	of	applying	different	activation	regimes.

Figure	1.	Final	opinion	configuration	for	four	different	activation	regimes	(U=0.2,	μ	=	0.3,	δ	=	1,	population	=	1000,	iteration	=
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700,000)

4.3 	Similar	to	the	original	DW	model	with	low	thresholds	(Deffuant	et	al.	2000),	the	2D	BC	model	reaches	to	pluralism	of	the	opinion	where	several	opinion	clusters	emerge.	The
differentiation	mechanism	gives	rise	to	the	emergence	of	local	consensus	(i.e.	opinion	clusters	in	Figure	1).	Huet	et	al.	(2008)	argue	that	after	some	point,	several	stable
equilibrium	points	emerge	and	opinion	clusters	form	around	those	points.	These	clusters	are	predominant	opinions	and	incrementally	attract	agents	toward	themselves.	Two
forces	cause	the	formation	of	the	opinion	clusters.	On	the	one	hand,	those	agents	which	are	close	in	both	opinions	tend	to	get	closer	and	form	groups.	On	the	other	hand,	those
who	feel	dissonance	are	separated	and	pushed	away	from	each	other.	As	a	result,	after	some	steps,	some	"meta-clusters"	emerge	in	the	population	(Huet	et	al.	2008).

4.4 	By	comparing	the	final	opinion	configuration	of	Figure	1,	it	seems	that	applying	different	activation	regimes	qualitatively	change	the	output	of	the	opinion	dynamics	model.	That
is,	observational	comparison	exhibits	that	not	only	the	number	of	opinion	clusters	may	differ,	but	also	the	equilibrium	points	at	which	opinion	clusters	form	around	differ	among
the	activation	regimes.	We	can	use	the	number	of	this	local	equilibrium	points	as	a	measure	to	evaluate	the	degree	of	consensus	in	the	whole	population.	That	is,	the	more	the
opinion	clusters,	the	less	the	degree	of	consensus.

4-2-	Analysis	of	Opinion	Clusters

4.5 	In	order	to	compute	the	number	of	the	clusters,	we	use	the	same	algorithm	used	by	Deffuant	(2006)	and	Huet	et	al.	(2008).	That	is,	we	define	a	minimum	distance	ε	between
the	agents'	opinions	under	which	they	assign	to	a	same	cluster.	In	practice	we	set	the	minimum	distance	at	ε	=	0.05	and	neglected	the	clusters	of	size	lower	than	5	agents	and
count	them	as	minority	clusters.	We	run	the	model	for	25	times	and	report	the	average	number	of	clusters.	The	following	pseudo-code	can	be	used	to	identify	and	compute	the
number	of	opinion	clusters	in	the	final	configuration	of	opinions.

4.6 	From	the	first	column	of	Figure	2,	we	can	see	that	the	intolerance	threshold	does	not	correlate	with	the	number	of	opinion	clusters.	However,	it	has	interactions	with	activation
regimes.	That	is,	as	we	increase	δ,	different	activation	regimes	exhibit	different	patterns	of	increase	and	decrease.	Moreover,	no	specific	pattern	can	be	seen	for	which
activation	regime	produces	the	most	or	least	number	of	opinion	clusters.	The	second	column	of	the	Figure	2	shows	the	effect	of	different	activation	orders	and	intolerance
threshold	on	the	maximum	cluster	size	when	the	uncertainty	is	fixed.	While	we	cannot	explicitly	see	any	regular	pattern	for	the	effect	of	updating	schemes	and	intolerance
threshold,	we	can	see	that	the	Poisson	activation	regime	in	which	the	extremists	are	more	likely	to	become	activated	(Poisson-1)	produces	the	least	maximum	cluster	size	for	all
combinations	except	for	one	case	where	U	=	0.1	and	d	=	1.	Finally,	the	third	column	illustrates	that	except	for	the	U	=	0.2	in	which	the	number	of	minority	opinion	clusters
decreases	with	intolerance	threshold,	in	other	cases	no	regular	pattern	can	be	identified.	It	should	be	noted	that	on	average	more	than	90	percent	of	theses	minority	clusters
only	include	one	agent.

4.7 	A	better	way	to	look	at	the	Figure	2,	however,	is	to	go	row	by	row	and	compare	the	behavior	of	each	activation	regime	with	respect	to	different	measures.	At	U	=	0.2,	the
uniform	updating	scheme	produces	the	most	number	of	opinion	clusters	with	almost	least	maximum	cluster	sizes	and	large	number	of	minority	clusters.	The	Poisson-2
activation	regime	leads	to	the	relatively	fewer	number	of	clusters	with	larger	maximum	sizes	and	few	numbers	of	minorities.	At	U	=	0.3,	the	Poisson-1	generates	large	number	of
opinion	clusters	with	least	maximum	cluster	sizes	and	moderate	number	of	minorities.	The	Poisson-1	results	often	show	big	size	opinion	clusters	and	high	number	of	minorities.
At	U	=	0.4,	the	Poisson-2	activation	regime	produces	almost	largest	number	of	clusters,	maximum	size,	and	minorities.	Random	updating	leads	to	the	least	number	of	clusters
with	moderate	maximum	size	and	few	minorities.

http://jasss.soc.surrey.ac.uk/18/3/8.html 5 30/06/2015



Figure	2.	Comparing	the	effect	of	applying	different	activation	regimes	on	the	number	of	clusters,	maximum	cluster	size,	and	number	of	minority	clusters	for	three	levels	of
intolerance	threshold	when	opinion	uncertainty	is	fixed	(	μ	=	0.3,	population	=	1000,	iteration	=	700,000)

4.8 	Figure	3	shows	how	does	the	clustering	of	opinions	vary	with	the	updating	scheme	and	opinion	uncertainty.	The	results	from	the	first	column	exhibit	a	negative	correlation
between	the	number	of	opinion	clusters	and	opinion	uncertainty	and	a	positive	correlation	between	the	maximum	cluster	size	and	the	uncertainty	in	all	activation	regimes.
However,	there	is	not	any	general	pattern	for	which	timing	regime	leads	to	the	most	or	least	number	of	opinion	clusters.	However,	in	case	of	maximum	cluster	sizes,	it	seems
that	the	Poisson-2	activation	regime	almost	has	the	greatest	maximum	and	the	Poisson-1	has	the	least	cluster	sizes	among	the	others.	As	for	the	number	of	the	minority
clusters,	all	updating	schemes	show	decreasing	pattern	except	the	Poisson-2	which	has	a	tipping	point	at	U	=	0.3.

4.9 	A	closer	look	at	the	behavior	of	different	activation	regimes	reveals	that	when	d	=	1,	the	uniform	timing	order	produces	large	number	of	opinion	clusters	at	U	=	0.2	and	0.3	with
moderate	maximum	sizes	and	relatively	high	level	of	minorities.	On	the	other	hand,	the	Poisson-2	regime	generates	almost	fewest	number	of	clusters	with	greatest	maximum
cluster	sizes	and	often	least	minorities.	When	d	=	1.5,	applying	the	Poisson-2	updating	scheme	results	in	large	number	of	clusters	with	highest	maximum	sizes	and	almost
largest	minorities.	At	this	level	of	intolerance	threshold,	the	behavior	of	random	and	uniform	regimes	is	quite	similar.	When	the	intolerance	threshold	increases	to	d	=	2,	while	the
Poisson-2	shows	pretty	similar	pattern	to	that	of	d	=	1.5,	the	Poisson-1	produces	relatively	fewer	number	of	clusters	with	the	least	maximum	sizes	and	almost	the	least	number
of	minority	clusters.
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Figure	3.	Comparing	the	effect	of	activation	regimes	on	the	number	of	clusters,	maximum	cluster	size,	and	number	of	minority	clusters	for	three	different	opinion	uncertainty
levels	when	the	intolerance	threshold	is	fixed	(	μ	=	0.3,	population	=	1000,	iteration	=	700,000)

4.10 	The	main	purpose	of	analyzing	the	number	of	emergent	opinion	clusters	and	its	related	statistics	is	to	investigate	the	process	of	consensus	formation.	In	this	section	our	main
goal	is	to	explore	which	activation	regime	leads	to	more	consensus	level	in	the	population.	Ideally,	the	one	that	produces	the	minimum	number	of	opinion	clusters,	minimum
number	of	minorities,	and	largest	maximum	cluster	size	is	of	interest.	However,	our	results	show	that	these	ideal	conditions	only	occur	in	4	out	of	the	9	combinations	of	the
opinion	uncertainty	and	intolerance	threshold.	In	other	combinations,	no	updating	scheme	has	the	dominant	performance.	For	example,	when	U	=	1	and	δ	=	1.5,	the	Poisson-2
activation	outperforms	the	others	in	the	formation	of	consensus	among	agents.	Table	3	should	be	consulted	in	order	to	compare	the	performance	of	different	activation	regimes
in	reaching	to	consensus.

Table	3:	Summarizing	the	Performance	of	Different	Activation	Regimes	on	Consensus	Building

Opinion	Uncertainty Intolerance	Threshold Minimum	Number	of	Clusters Largest	Maximum	Cluster	Size Minimum	Number	of	Minorities
0.2 1 Poisson-1	and	-2 Poisson-1 Poisson-2
0.2 1.5 Poisson-2 Poisson-2 Poisson-2
0.2 2 Random Random Random
0.3 1 Poisson-2 Poisson-2	&	Random Poisson-2
0.3 1.5 Random Poisson-2 Random
0.3 2 Uniform Uniform Poisson-1
0.4 1 Random Poisson-2 Random
0.4 1.5 Random	&	Uniform Poisson-2 Poisson-1
0.4 2 Random	&	Uniform Random Random

Table	4:	ANOVA	Test	for	the	Number	of	Opinion	Clusters

Source Sum	of	Squares Degree	of	Freedom Mean	Square F Sig.
Corrected	Model 88533.070a 35 2529.516 75.750 .000

Intercept 500556.250 1 500556.25 14989.78 .000
D 88.747 2 44.373 1.329 .265
U 76123.087 2 38061.543 1139.801 .000
AR 2208.528 3 736.176 22.046 .000
D	*	U 2725.427 4 681.357 20.404 .000
D	*	AR 1719.342 6 286.557 8.581 .000
U	*	AR 4674.309 6 779.051 23.330 .000
D	*	U	*	AR 993.631 12 82.803 2.480 .003
Error 28851.680 864 33.393
Total 617941.000 900
Corrected	Total 117384.750 899
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a.	R	Squared	=	.754	(Adjusted	R	Squared	=	.744)

Table	5:	ANOVA	Test	for	the	Maximum	Cluster	Size

Source Sum	of	Squares Degree	of	Freedom Mean	
Square

F Sig.

Corrected	Model 9465499.692a 35 270442.84 100.245 .000

Intercept 32471382.668 1 32471382.6 12036.15 .000
AR 282673.639 3 94224.546 34.926 .000
U 8621614.462 2 4310807.2 1597.885 .000
D 113435.829 2 56717.914 21.024 .000
AR	*	U 239456.018 6 39909.336 14.793 .000
AR	*	D 29008.944 6 4834.824 1.792 .098
U	*	D 123051.291 4 30762.823 11.403 .000
AR	*	U	*	D 56259.509 12 4688.292 1.738 .055
Error 2330916.640 864 2697.820
Total 44267799.000 900
Corrected	Total 11796416.332 899

a.	R	Squared	=	.802	(Adjusted	R	Squared	=	.794)

Table	6:	ANOVA	Test	For	the	Number	of	Minority	Clusters

Source Sum	of	Squares Degree	of	Freedom Mean	Square F Sig.
Corrected	Model 359481.422a 35 10270.898 72.174 .000

Intercept 1402487.538 1 1402487.538 9855.3 .000
D 62109.216 2 31054.608 218.22 .000
U 153794.409 2 76897.204 540.36 .000
AR 16062.889 3 5354.296 37.625 .000
D	*	U 51988.298 4 12997.074 91.331 .000
D	*	AR 8291.291 6 1381.882 9.711 .000
U	*	AR 51795.244 6 8632.541 60.661 .000
D	*	U	*	AR 15440.076 12 1286.673 9.042 .000
Error 122953.040 864 142.307
Total 1884922.000 900
Corrected	Total 482434.462 899

a.	R	Squared	=	.745	(Adjusted	R	Squared	=	.735)

4.11 	To	better	measure	the	effect	of	different	updating	schemes	on	the	properties	of	opinions,	we	run	a	3×3×4	full-factorial	ANOVA	test	on	our	results.	We	consider	three	levels	for
intolerance	threshold	and	opinion	uncertainty	along	with	four	different	activation	regimes	and	25	observations	for	each	combination.	The	ANOVA	table	contains	the	sources	of
variation,	degrees	of	freedom,	sum	of	squares	(SS),	mean	square	(MS),	F-ratio	test	statistics,	and	the	corresponding	significance	levels	(p-values).	The	results	from	Table	4
illustrate	a	significant	difference	between	the	different	types	of	activation	regimes	(p-value	=	0.00)	and	various	levels	of	uncertainty	(p-value	=	0.00)	on	the	number	of	opinion
clusters.	All	interactions	between	factors	are	significant	as	well.	However,	the	effect	of	intolerance	threshold	does	not	seem	to	be	statistically	significant	at	5	percent	significance
level	as	the	p-value	is	equal	to	0.265.	We	also	run	one-way	ANOVA	test	to	just	measure	the	significance	of	the	activation	regimes	on	the	number	of	emergent	clusters	and	it
turned	out	to	be	highly	significant	(p-value	=	0.00).

4.12 	Table	5	presents	the	ANOVA	test	results	showing	the	significance	level	of	different	factors	and	factors	interactions	on	the	maximum	opinion	cluster	sizes.	We	can	see	that	the
difference	is	significant	for	all	modeling	factors	(difference	significant	at	p	<	0.05).	Table	4	also	shows	that	the	interactions	between	activation	regime	and	opinion	uncertainty
and	also	intolerance	threshold	and	opinion	uncertainty	are	statistically	significant	(p-value	=	0.00).	The	one-way	ANOVA	test	of	the	effect	of	updating	schemes	on	the	maximum
cluster	size	supports	the	significance	of	activation	regimes	(p-value	=	0.00).	Finally,	Table	6	demonstrates	the	ANOVA	test	results	for	the	number	of	minority	clusters.	The
corresponding	p-values	indicate	that	all	modeling	factors	and	their	interactions	are	significant	sources	of	variation.	Similar	to	previous	measures,	the	one-way	ANOVA	shows
the	significance	of	the	effect	of	activation	regime	on	the	average	number	of	minority	clusters	(p-value	=	0.00).

4-3-	Number	of	Extremists

4.13 	As	mentioned	in	the	introduction	part	of	the	paper,	our	second	main	interest	in	this	paper	is	to	explore	the	effect	of	the	activation	regimes	on	the	average	number	of	emergent
extremists	in	the	population.	Here	we	would	like	to	examine	whether	any	particular	activation	regime	can	intensify	or	moderate	the	radicalization	process.	In	doing	so,	we	apply
different	asynchronous	updating	schemes	on	the	2D	BC	opinion	dynamics	model	and	test	the	effect	of	them	along	with	two	other	modeling	parameters	of	the	2D	BC	model	(i.e.
opinion	uncertainty	and	intolerance	threshold).	Similar	to	the	analysis	of	opinion	clusters	section,	we	consider	three	different	levels	for	opinion	uncertainty	(U	=	0.2,	0.3,	and	0.4)
and	intolerance	threshold	(δ	=	1,	1.5,	and	2).	All	other	modeling	parameters	kept	constant	during	the	experiment.	We	run	each	combination	for	25	times	and	calculate	the
average	number	of	extremists.	We	define	an	agent	as	an	extremist	if	at	least	the	absolute	value	of	one	of	its	final	opinion	is	equal	or	greater	than	0.9.

4.14 	Figure	4	compares	the	average	number	of	emergent	extremists	that	resulted	from	applying	different	activation	regimes	at	various	opinion	uncertainty	levels	where	the
intolerance	threshold	is	fixed	at	δ	=	1,	1.5,	and	2.	First	of	all,	it	appears	that	in	all	three	levels	of	intolerance	thresholds,	as	the	opinion	uncertainty	increases,	the	average	number
of	extremists	decreases	in	all	activation	regimes.	The	slope	of	reduction	is	usually	lower	in	Poisson-1	activation	regime	compared	with	the	others.	Moreover,	we	can	see	that
the	uniform	and	random	activation	regimes	exhibit	similar	patterns	and	produce	almost	same	number	of	extremists.	On	the	other	hand,	the	Poisson-1	activation	regime	seems
to	generate	relatively	fewer	number	of	radical	agents	at	δ	=	1	and	δ	=	1.5.	The	Poisson-2	updating	scheme	generates	the	most	number	of	extremists	when	the	intolerance
threshold	is	fixed	at	δ	=	1	and	δ	=	1.5.	Indeed,	at	U	=	0.2	level,	it	always	produces	the	greatest	number	of	emergent	extremists.	However,	it	produces	relatively	fewer	radicals
when	δ	=	2	and	U	=	0.3	or	0.4.
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Figure	4.	Comparing	the	number	of	extremists	from	four	different	activation	regimes	at	different	opinion	uncertainty	levels	when	the	intolerance	threshold	is	fixed	(	μ	=	0.3,
population	=	1000,	iteration	=	700,000)

Figure	5.	Comparing	the	number	of	extremists	from	four	different	activation	regimes	at	different	intolerance	threshold	levels	when	the	opinion	uncertainty	is	fixed	(	μ	=	0.3,
population	=	1000,	iteration	=	700,000)

4.15 	Figure	5	shows	how	the	average	number	of	extremists	changes	with	activation	regime	when	the	intolerance	threshold	is	increased	and	opinion	uncertainty	is	fixed.	Two
observations	should	be	noticed	here.	First,	in	all	activation	regimes,	increasing	the	level	of	intolerance	threshold	decreases	the	number	of	radical	agents.	We	should	have
expected	this	because	higher	level	of	intolerance	threshold	means	that	individuals	are	more	likely	to	tolerate	the	opinion	differences.	Therefore,	less	number	of	agents	decide	to
differentiate	from	others	which	in	turn	reduces	the	overall	number	of	differentiating	encounters	in	the	simulation.	One	should	also	note	that	the	number	of	extremists	usually
decreases	with	lower	slope	in	the	Poisson-1	regime	compared	to	other	timing	schemes.

4.16 	Second,	it	appears	that	applying	uniform	and	random	activation	schemes	does	not	significantly	change	the	number	of	extremists.	However,	Poisson	updating	schemes	seems
to	significantly	change	the	number	of	radical	agents	compared	to	other	two	activation	regimes.	While	the	Poisson-1	often	leads	to	the	least	number	of	extremists,	the	Poisson-2
scheme	appears	to	produce	the	greatest	number	of	radical	agents	in	most	combinations.	We	have	seen	an	almost	similar	pattern	in	Figure	4	as	well.	These	observations	are
quite	interesting	and	somehow	counterintuitive	because	in	the	Poisson-1	activation	regime	we	have	allowed	agents	with	greater	total	opinions	to	get	activated	more	frequently.
In	other	words,	we	let	the	agents	with	extreme	opinions	to	involve	in	more	number	of	encounters	compared	to	moderate	ones.	As	a	result,	one	might	expect	to	see	more	number
of	radical	agents	in	the	population,	but	the	simulation	results	actually	show	an	inverse	pattern.	On	the	other	hand,	the	Poisson-2	activation	regime,	in	which	we	let	the	moderate
agents	to	update	more	frequently,	produces	the	most	number	of	radical	agents	compared	to	other	activation	regimes.	One	plausible	explanation	for	this	outcome	might	be	that
the	Poisson-1	updating	scheme	increases	the	relative	number	of	"attractive"	encounters	whereas	the	Poisson-2	activation	regime	increases	the	relative	number	of
"differentiating"	or	"rejecting"	encounters.

4.17 	The	ANOVA	test	reveals	that	all	modeling	factors	including	the	activation	regime	and	their	interactions	have	statistically	significant	effect	on	the	average	number	of	emergent
extremists	at	the	5	percent	significance	level	(Table	7).	We	also	ran	the	one-way	ANOVA	to	only	test	the	effect	of	using	different	activation	regimes	on	the	number	of	extremists
and	it	supports	the	significance	of	it	as	well	(p-value	=	0.00).	Also,	since	the	interactions	are	significant,	one	should	be	very	cautious	in	interpreting	the	main	effects.	A	significant
interaction	here	means	that	for	example	the	effect	of	a	given	activation	regime	on	the	number	of	emergent	extremists	at	one	opinion	uncertainty	level	is	different	from	its	effect	at
the	other	opinion	uncertainty	level.	Therefore,	if	one	is	looking	for	the	lowest	or	highest	number	of	extremists,	Table	8	should	be	consulted	to	figure	out	what	combinations	of
fixed	factors	will	minimize	or	maximize	the	average	number	of	radical	agents	in	the	population.

Table	7:	ANOVA	Tests	of	Between-Subjects	Effects	on	Number	of	Extremists

Source Sum	of	Squares Degree	of	Freedom Mean	Square F Sig.
Corrected	Model 6146316.960a 35 175609.056 132.077 .000

Intercept 13613148.160 1 13613148.16 10238.54 .000
D 2496083.460 2 1248041.730 938.661 .000
U 2638945.680 2 1319472.840 992.385 .000
AR 302714.640 3 100904.880 75.891 .000
D	*	U 156277.120 4 39069.280 29.384 .000
D	*	AR 216342.193 6 36057.032 27.119 .000
U	*	AR 160481.733 6 26746.956 20.117 .000
D	*	U	*	AR 175472.133 12 14622.678 10.998 .000
Error 1148772.880 864 1329.598
Total 20908238.000 900
Corrected	Total 7295089.840 899

a.	R	Squared	=	.843	(Adjusted	R	Squared	=	.836)

Table	8:	Comparing	activation	regimes	with	respect	to	minimum	and	maximum	number	of	extremists

Opinion	Uncertainty Intolerance	Threshold Minimum Maximum
0.2 1 Poisson-1 Poisson-2
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0.2 1.5 Poisson-1 Poisson-2
0.2 2 Poisson-1 Poisson-2
0.3 1 Poisson-1 Poisson-2
0.3 1.5 Random Uniform
0.3 2 Poisson-2 Poisson-1
0.4 1 Random Poisson-2
0.4 1.5 Random Poisson-2
0.4 2 Poisson-1 Uniform

Discussion	and	Conclusion

5.1 	One	of	the	reasons	behind	the	current	trend	toward	the	use	of	computational	models	in	social	sciences	is	to	be	able	to	predict	and	control	the	collective	behavior	of	people.	In
order	to	accomplish	these	tasks,	one	should	take	into	account	the	detailed	behavioral	aspect	of	the	systems	that	is	intended	to	be	modeled.	Agent	activation	is	an	important	but
neglected	aspect	of	agent-based	model	building	and	evaluation.	It	is	important	to	consider	multiple	activation	schemes	because,	as	we	have	shown	here,	activation	regime	has
qualitative	and	quantitative	impact	on	the	model	output.	Without	an	understanding	of	the	role	of	activation	timing	it	will	be	hard	to	assign	causes	of	variation	in	a	model,	as	some
of	this	will	undoubtedly	be	due	to	how	agents	are	turned	on.

5.2 	This	paper	contributes	to	the	literature	of	opinion	dynamics	in	three	ways.	First	we	introduce	a	state-driven	activation	regime	in	which	agents'	timing	order	depends	on	their
opinions.	Second,	we	show	how	using	different	activation	regimes	can	qualitatively	change	the	outcome	of	a	given	opinion	dynamics	model.	Third,	we	discussed	various
statistics	(i.e.	number	of	opinion	clusters,	maximum	cluster	size,	number	of	minority	clusters,	and	number	of	emergent	extremists)	to	show	how	applying	different	updating
schemes	can	quantitatively	change	the	results.

5.3 	The	simulation	results	showed	that	none	of	the	activation	regime	can	dominate	the	others	in	terms	of	reaching	to	consensus.	That	is,	there	is	no	updating	scheme	that	for	each
combination	of	opinion	uncertainty	and	intolerance	threshold	produces	the	minimum	number	of	opinion	clusters,	minimum	number	of	opinion	cluster	minorities,	and	maximum
major	cluster	size.	Out	of	the	nine	analyzed	combinations	of	uncertainty	and	intolerance	threshold,	only	in	four	of	them	we	could	identify	an	activation	regime	that	has	all	ideal
measures	of	reaching	to	consensus.	However,	even	in	those	four	conditions	we	see	different	activation	regimes.	We	have	provided	a	table	that	can	be	consulted	to	identify	that
at	each	condition	which	activation	regime(s)	results	in	more	consensus	level.	We	also	performed	the	one-way	and	full	factorial	ANOVA	tests	to	statistically	measure	the
significance	of	using	different	activation	regimes	on	the	three	opinion	clusters	statistics	and	the	results	showed	the	significance	difference	at	p	<	0.05.

5.4 	Another	fascinating	result	is	the	moderating	role	of	Poisson-1	activation	regime	on	the	emergent	of	extremists	in	the	population.	This	is	interesting	because	in	Poisson-1
activation	regime	we	have	allowed	agents	with	larger	values	of	opinions	to	get	activated	more	frequently.	In	other	words,	we	let	the	agents	with	extreme	opinions	to	involve	in
more	number	of	encounters	compared	to	moderate	ones.	As	a	result,	one	might	expect	to	see	more	number	of	extremists	in	the	population,	but	the	simulation	results	show	an
inverse	pattern.	One	immediate	implication	of	this	finding	is	that	talking	and	interacting	with	radical	individuals	would	eventually	be	effective	in	reducing	the	number	of	people
with	radical	opinions	in	the	society.

5.5 	On	the	other	hand,	the	Poisson-2	updating	scheme,	in	which	the	moderate	agents	have	more	interaction	probability	and	get	involved	in	more	encounters,	exhibit	another
counterintuitive	result.	While	we	expected	to	see	smaller	number	of	radical	agents,	the	Poisson-2	updating	scheme	leads	to	the	emergence	of	maximum	number	of	extremists	in
all	nine	combinations	of	opinion	uncertainty	and	intolerance	threshold	compared	to	other	three	updating	regimes.	One	explanation	for	this	phenomenon	might	be	that	allowing
moderate	agents	to	get	activated	more	frequently	increases	the	number	of	differentiating	encounters	in	which	agents	feel	dissonance	and	reject	from	each	other	which
eventually	leads	to	the	formation	of	more	radical	opinions	in	the	population.

5.6 	The	results	of	this	study	support	the	influential	role	of	activation	regime	in	the	collective	behavior	of	individuals'	opinions	and	promote	the	consideration	of	activation	regime	as
one	of	the	modeling	specifications	that	should	be	determined	explicitly	and	appropriately	in	all	agent-based	models.	Our	study	has	some	limitations	as	well.	Since	we	wanted	to
only	investigate	the	role	of	activation	regimes,	we	exactly	implemented	the	original	2D	BC	model.	This	model	does	not	include	the	network	structure	in	its	activation	and
updating	mechanisms.	Future	works	can	add	the	social	network	topology	to	the	current	study.	To	this	one	might	add	the	analysis	and	comparison	of	another	computational
opinion	dynamics	models	and	introducing	new	state-driven	or	incentive-based	activation	regimes	as	well.
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