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Abstract In this paper, we propose a class of models for generating spatial versions
of three classic networks: Erdös-Rényi (ER), Watts-Strogatz (WS), and Barabási-
Albert (BA). We assume that nodes have geographical coordinates, are uniformly
distributed over an m 9 m Cartesian space, and long-distance connections are
penalized. Our computational results show higher clustering coefficient, assorta-
tivity, and transitivity in all three spatial networks, and imperfect power law degree
distribution in the BA network. Furthermore, we analyze a special case with geo-
graphically clustered coordinates, resembling real human communities, in which
points are clustered over k centers. Comparison between the uniformly and geo-
graphically clustered versions of the proposed spatial networks show an increase in
values of the clustering coefficient, assortativity, and transitivity, and a lognormal
degree distribution for spatially clustered ER, taller degree distribution and higher
average path length for spatially clustered WS, and higher clustering coefficient and
transitivity for the spatially clustered BA networks.
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1 Introduction

Generating social networks has attracted significant interest in network science and
agent-based modeling, given the considerable impact of network topology and its
properties on the behavior and output of models (Alam and Geller 2012; Alizadeh
et al. 2014). However, the generation algorithms of social networks have often
omitted important empirical features found in real-world social networks. One such
regularity often missing from formation processes of social networks is embedded
location in physical geographic space (Barthélemy 2011). Indeed, social relations
are constrained by and benefit from human ties as well as they are affected by
geography (Batty 2012; Onnela et al. 2011). For example, the importance of an
individual’s location is significant for modeling individuals’ behavior and associ-
ated opinion dynamics (Soboll et al. 2011), and racial segregation (Edmonds 2006).

Three well-known and fundamental models for generating social network
structures are: (1) random networks (Erdös and Rényi 1959, 1960; Gilbert 1959;
Rapoport 1957), (2) small-world networks (Watts and Strogatz 1998), and (3) scale-
free networks (Barabasi andAlbert 1999). Randomnetwork construction is only based
on stochasticity, whereas a scale-free network is generated through individuals’
preferential attachment and generates a network with degree distribution of nodes
following a power lawdistribution.Althoughmany algorithms have been proposed for
the generation of social networks (see Newman 2003b for an early review), not all of
them are based on empirically valid social dynamics (Borgatti et al. 2013; Cioffi-
Revilla 2014,Chap. 4). For examples of empirically based social network construction
algorithms, see Cointet and Roth (2007) and Yoshida et al. (2008).

For social networks consisting of human interactions—the focus of this study—
empirical findings have repeatedly demonstrated that the probability of multiple
modes of interaction (e.g., travel, communication, marriages, commerce, conflict, and
many others) is strongly correlated to distance between the individuals or groups. For
example, social influence measured by frequency of memorable interactions is
inversely correlated with distance, resulting in a hyperbolic function of the form

p kð Þ ¼ d%1 (Latane et al. 1995). Analyzing mobile phone data in Belgium, Lambiotte

et al. (2008) identified the connection probability of p kð Þ ¼ d%2, replicating inverse-
square or so-called social gravity laws first documented a century ago and found in
every human and social geography textbook. More recently, Onnela et al. (2011)
investigated a large dataset of voice calls and text messages from an anonymous
European country and detected that the tie probability decayed with distance as a
power law with exponent a = 1.58 for voice ties and a = 1.49 for text ties.

Although determining the acceptable range of the exponent a demands more
empirical studies, the necessity for including spatial factors in social networks is
clear. Several algorithms have been proposed for embedding geographic space into
network models (see Boccaletti et al. (2006) and Barthélemy (2011) for review).
Most of these models have been developed based on real-world spatial networks
such as transportation networks, the Internet, and power grid networks, and they are
mainly concerned with changes in degree distribution as a result of embedding the
spatial dimension.
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Our focus here is on human social networks, in which people constitute nodes
and their social ties are edges of the network. More specifically, we are interested in
examining how the inclusion of geospatial location and proximity in a given
generative algorithm for social networks affects the statistical properties and
structure of networks in terms of empirical regularities that have been found in real-
world human social networks. Our goal is twofold in this study: (1) to emphasize the
relevance and importance of the geographical proximity on the formation of social
networks; (2) to introduce the concept of spatial social networks to the agent-based
modeling community and encourage the use of spatial networks to explore the
geography of emergent and collective behaviors. This is particularly important
where the behavior of a model depends on geographical properties of agents.

We propose simple methods to construct spatial extensions of the Rapoport–
Erdös–Rényi (ER), Watts–Strogatz (WS), and Barabási–Albert (BA) network
models and measure and compare their network characteristics. Assuming there is
an embedding space representing Cartesian coordinates of the agents, we associate
long-range connections with a cost produced by a distance function, such that the
probability of connection decays as a power law. In order to better capture the effect
of distance selection on network properties, we examine two cases where agents are
either uniformly distributed across geographical space, or are spatially clustered.

The rest of the paper is organized as follows. Before going through the proposed
spatial network generation algorithms, we review empirical regularities of real-
world large social networks and describe the ER, WS, and BA networks in detail in
Sect. 2. In Sect. 3, we present our proposed models for generating spatial extensions
of ER, WS, and BA models. We present statistical properties of the proposed spatial
networks in Sect. 4 and compare them with the non-spatial original ER, WS, and
BA networks. Section 5 contains a discussion of main points and conclusions.

2 Overview of social network generation algorithms

We begin by reviewing empirical regularities of large social networks. Next, we
present an overview of the three well-known social network generation models and
their properties.

2.1 Empirical regularities of large social networks

According to the literature, real-world large social networks exhibit a set of
observable empirical regularities. Not all of these regularities are found in all
networks and different types of social networks exhibit a subset of these properties
which are outlined below. We use network property measures to capture these
regularities in Sect. 4 and compare the proposed socio-spatial networks with the
classic non-spatial versions.

1. Low network density among all possible edges in a network, only a few of them
should exist (Wong et al. 2006).
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2. A limit on the nodes’ degree individuals’ degree of connectivity should not
exceed a reasonable limit (Gilbert 2006; Barthélemy 2003). We capture this
characteristic by computing the maximum degree in the network.

3. Difference in nodes’ degree individuals’ degree of connectivity should not be
the same throughout the network (Fischer 1982). We compute the standard
deviation of the degree to account for this property.

4. A heavy-tailed distribution of nodes’ degree some individuals in the network
should have a large number of immediate neighbors (Fischer 1982; Redner 1998;
Albert et al. 1999; Barabasi and Albert 1999; Dorogovtsev and Mendes 2002).

5. Degree assortativity individuals with high number of connections tend to be
connected with other individuals with many connections (Newman
2002, 2003a). In other words, the assortativity of a network measures the
correlation between the nodes’ degree. Here we measure this correlation based
on the Pearson correlation coefficient of the degrees (Callaway et al. 2001),
which varies between -1.0 (disassortative) and ?1.0 (perfectly assortative).

6. High clustering some members of an individual’s personal network should
know each other (Bruggeman 2008). In other words, clustering measures the
conditional probability that friends of an individual are themselves friends.

7. Presence of communities there should be some groups in which members are
highly connected with their in-group fellows and loosely connected with out-
groups (Wong et al. 2006). By tradition, these groups are called communities
(Newman 2004).

8. Short path length individuals in the network should be able to reach each other
via a relatively small number of connections (Milgram 1967; Garfield 1979;
Chung and Lu 2002). This characteristic reflects the ‘‘small-world’’ effect.

2.2 Erdös–Rényi network

Erdös and Rényi (1959, 1960) produced two random network models, similar to an
earlier model independently published by Rapoport (Rapoport 1957) and Cioffi-
Revilla (2014, Chap. 4). The first Erdös-Rényi model (ER, for short) produces a
graph which is uniformly randomly selected from the set of all possible graphs. The
second model connects each node pair with probability p.While working separately,
Gilbert (1959) also produced the second model. Here our focus is on the second
version. The following pseudo-code generates the second ER network.

For each node i 
For each node j = i + 1 

Chance = a random number between 0 and 1 
If p > Chance 

Create an edge between node i and node j

It has been shown that the average path length in an ER network is close to ln N,
which is small enough to exhibit the short path length property (Watts and Strogatz
1998; Albert and Barabási 2002). This property has important implications in many
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applications, such as a disease’s speed of diffusion (Watts and Strogatz 1998). The
average degree for any random network is p(N - 1), which implies that we have to
choose a small p to obtain a low-density network (Barthélemy 2011). The main
shortcoming of the ER network is that it fails to generate high clustering (Hamill
and Gilbert 2009).

2.3 Small-world network

Although the small-world phenomenon (also known as ‘‘six degrees of separation’’)
was discovered as early as 1967 by Milgram, it was not until 1998 that Watts and
Strogatz proposed a simple but powerful algorithm to generate a social network that
exhibits long-range correlations, high clustering, and average short path length. The
algorithm starts from a regular lattice and then rewires each pair of nodes with
probability p. The following pseudo-code can be used to generate the Watts-
Strogatz (1998) small-world network (WS).

Create a regular lattice of N nodes each connected to its K nearest neighbors
For each node i

For each node j = i + 1, …, i + K/2 
If j > N
j = j - N

 Chance = a random number between 0 and 1 
 If p > Chance 

Node m = a uniformly chosen node at random 
Create an edge between node i and node m 
Remove the edge between node i and j 

The small-world network has a similar topology to that of the ER network.
Indeed, WS ? ER for p ? 1. Although the WS network has a significantly higher
clustering coefficient relative to the ER, in general the clustering coefficient and the
average path length are highly dependent on the rewiring probability p.

2.4 Scale-free network

Barabasi and Albert (1999) showed that networks such as World Wide Web,
academic citation patterns, actor collaboration networks, and power grids are scale-
free (SF), because they have degree distributions where the probability that a node
has links with k other nodes decays as a power law probability density function,
P kð Þ& k%a, where a is a constant and k = 1, 2, …, N. Such a power law is also a
hybrid function, consisting of a continuous (a) and a discrete (k) dimension, so
analyzing its associated fields requires special operators such as nabladot and related
methods (Cioffi-Revilla 2015). Barabasi and Albert (1999) hypothesized that
growth and preferential attachment are two mechanisms that explain the scale
invariance behavior (‘‘scaling’’) of real networks. Their proposed generative
algorithm combined the two mechanisms by adding a new node at each time step
and assigning each existing node a probability (of connecting to the new node being
added) that is proportional to a node’s current degree. This is described by the
following pseudo-code:
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Create a fully connected initial network of m0 nodes 
For each node i = m0+1,…,N

Current degree = 0 
While Current degree < m

 Node j = a uniformly randomly selected node from all existing
          nodes except the node i and nodes adjacent to node i
 p = degree of node j / number of all edges in the network 
 chance = a random number between 0 and 1 
 if p > chance 
  Create an edge between node i and node j 

where m0 is the initial size of the network, m is the number of nodes to which any
new added node will be connected, and N is the final network size. In this SF
network, the degree distribution is a power law with exponent a = 3, average path
length grows as l& logðNÞ (Newman 2003b), assortativity decreases as log2N/
N (Newman 2002), and clustering decreases as 1/N (Klemm and Eguiluz 2002).
3 Generating spatial social networks

We consider an m 9 m Cartesian space and randomly generate N points drawn from
a uniform distribution to represent the spatial coordinates of agents. Since the total
density of points in space might have an effect on results, we define geographic
density (GD) as a modeling parameter and will perform sensitivity analysis on it.

3.1 Generating a spatial ER network

Hamill and Gilbert (2009) proposed a generative process for network construction
based on social circles in which nodes connect when their circles reach a given
radius. Building on this idea, Holzhauer et al. (2013) used geo-referenced data to
produce a network with properties of the SW model. Here, we randomly assign each
agent to one point on the m 9 m Cartesian space. Then, similar to the ER network-
formation process, each distinct pair of agents connects with probability given by
the following power law or hyperbolic function:

pðdÞ ¼ Cd%a; ð1Þ

where C is a normalizing coefficient, d denotes the spatial distance between nodes,
and a is a distance-decay exponent. In Eq. (1), constant C normalizes the distri-
bution, such that:

Zdmax

dmin

pðdÞdd ¼ 1; ð2Þ

which yields the following solution:

1 ¼
Zdmax

dmin

Cd%add ¼ C

Zdmax

dmin

d%add ¼ C

1% a
d%aþ1
! " dmax

dmin
; ð3Þ
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We can see that Eq. (3) makes sense only if a[ 1. As a result, Eq. (3) yields:

C1 ¼
1% a

d1%a
max % d1%a

min

; ð4Þ

The following pseudo-code can be used to produce the proposed spatial Erdös–
Rényi (SER) network:

For each node i: 
 For each node j = i+1 … N: 

p = Cd-α
Chance = a random number between 0 and 1
If p > Chance: 

Create an edge between i and j

3.2 Generating spatial WS networks

Given that each agent is randomly assigned to a point on an m 9 m Cartesian space,
similar to Watts and Strogatz (1998), we begin with a regular lattice where each
agent is connected to its k nearest neighbors. Here, to incorporate geographical
proximity into the model, two scenarios are plausible. First, following Kleinberg
(2000), rewiring occurs with probability p and the selection of a new node is
conditioned on the spatial distance between nodes:

pðdÞ ¼ C1d
%a
ij ; ð5Þ

where dij is the Euclidean distance between agent i and agent j in Cartesian space, a
is a fixed clustering exponent, and C1 is a normalization factor. Constant C1 in
Eq. (5) is given by the normalization requirement (similar to Eq. 2). The advantage
of this approach is that we can compare the resulting network with that of WS
model since they share the rewiring probability p. We denote this version of the
model as SWS-1. However, our proposed approach is to condition the rewiring step
on inter-node distance, replacing probability p in Kleinberg’s (2000) approach with
Eq. (4), and then selecting the new node uniformly at random:

p dð Þ ¼ C2d
a
ij; ð6Þ

Constant C2 in Eq. (6) can be obtained by an approach similar to Eq. (2). The
following pseudo-code describes this second version of the spatial Watts–Strogatz
(SWS-2) model:

Create a regular lattice of N nodes each connected to its k nearest neighbors
For each node i: 

For each node j = i + 1, …, i + k/2: 
If j > N: 

j = j - N
 dij = Euclidean distance between node i and node j
 p = Cdijα
 Chance = a random number between 0 and 1
 If Chance < 1-p: 

Node m = a uniformly randomly selected node from all nodes except
         the node i and nodes connected to node i
Create an edge between node i and node m 
Remove the edge between node i and j 
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3.3 Generating a spatial Barabási–Albert network

In a BA network, the probability with which a new vertex connects to the existing
vertices is not uniform and there is a propensity to connect to well-connected vertices.
Here, to incorporate the geographical proximity of agents into the algorithm,we assume
that there is a higher probability that a new added node will be linked to a vertex that (1)
already has a large number of connections, and (2) located geographically closer. This
means that nearby hubs aremore likely to be chosen by new nodes than are distant hubs.
After randomly assigning all agents to a point in the m 9 m Cartesian space, starting
with a small number (m0) of vertices, at every time step we add a new vertex with m
(Bm0) edges that link thenewvertex tomdifferent vertices alreadypresent in the system.
To incorporate preferential attachment and spatial proximity, we assume that the

probability P kj; dij
# $

that a new vertex i will be connected to vertex j depends on the

connectivity kj and the geographical distance dij of that vertex:

p kj; dij
# $

/ kjf ðdijÞ

where f(dij) denotes a function of distance between node i and node j. While several
functions have been proposed for the f(dij) (e.g., Yook et al. 2002; Xulvi-Brunet and
Sokolov 2002; Manna and Sen 2002; Barthélemy 2003), in this study, we use a
power law, based on Onnela et al.’s (2011) finding. Accordingly, we define the
connection probability for new nodes as:

p kj; dij
# $

¼ Ckjd
%a
ij ; ð7Þ

where C is the normalization constant determined in way to fulfill the requirement of:
ZZ

Ckjd
%a
ij ¼ 1; ð8Þ

The following pseudo-code elaborates our proposed approach to construct spatial
Barabási-Albert (SBA) networks:

Create a fully connected initial network 
For each node i = m0+1,…,N: 

Current degree = 0 
While Current degree < m: 

 Node j = a uniformly randomly selected node from all existing 
          nodes except the node i and nodes adjacent to node i
p = C × (degree of node j) × (distance between node i and j)-alpha

 chance = a random number between 0 and 1 
 if p > chance: 
  Create an edge between node i and node j 

4 Results

In this section we present our computational results of the properties of the proposed
socio-spatial network models and compare them with those of ER, SW, and BA
networks when it is appropriate. More specifically, we measure clustering
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coefficient, network density, average path length, assortativity, transitivity, and min,
max, mean, and standard deviation degree. While several algorithms have been
proposed for some of these measures, for simplicity of reproducing the results, we
use the algorithms that have been implemented in the Python’s Networkx library.
All results are averaged over 25 independent model runs with different random
seeds. It should be noted that in all analysis in this study we only consider
undirected networks. Moreover, since the focus of this study is on the human social
network, we limit our analysis to Onnela et al’s (2011) findings that a & 1.5 and
only consider three values of a = 1.2, 1.5, and 2 for our sensitivity analysis
purposes.

4.1 Properties of the SER network

In this subsection we compute and report the characteristics of our proposed SER
social network in terms of empirical regularity measures. ER and SER networks
have different parameters, so pairwise comparisons are not possible. However,
computing and comparing their network properties can provide valuable insights
about their behavior under considered parameter settings. Here we report network
properties for three different values of connection probability p in the ER model and
three different exponents a for the SER model, as shown in Table 1. We consider
1000 nodes in this section, however, our further analysis (not reported) showed that
increasing the number of nodes to 5000 or 10,000 does not change the findings. The
main results is that the SER model shows significantly larger clustering coefficient
in its typical parameter range compared to the typical parameter range in the ER
model. Moreover, the assortativity is significantly greater in the SER model. In fact,
for a = 1.5, assortativity equals to 0.22, consistent with empirical measurements for
various networks within the range [0.2, 0.36] (Newman 2003a). In addition, degree
in the SER model shows smaller values of maximum and standard deviation. Note
that, for a C 2, the SER model often becomes disconnected and, therefore, the
average path length cannot be computed.

Table 1 Network properties of the ER and SER models

ER SER

p = 0.01 p = 0.02 p = 0.05 a = 1.2 a = 1.5 a = 2

Mean degree 9.96 19.96 50.08 10.19 6.04 3.56

Clustering coefficient 0.01 0.02 0.05 0.09 0.2 0.41

Density 0.01 0.02 0.05 0.01 0.006 0.003

Average path 3.26 2.68 2.027 2.17 2.88 N.A.

Assortativity -0.004 -0.003 -0.001 0.12 0.22 0.46

Transitivity 0.01 0.02 0.05 0.09 0.2 0.47

Min degree 2 7.16 28.68 1.28 0 0

Max degree 21.72 34.52 73.84 22.16 15.44 11.04

Std. degree 3.14 4.39 6.86 3.4 2.53 1.92
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Node degree k is the number of links connected to a node in a given network,
which is a fundamental network property correlated with or driving other network
patterns and types (Cioffi-Revilla 2014, Chap. 4). A network’s degree distribution
shows the behavior of relative frequency of degree values, a distribution that is often
denoted by pk, Pr (k), or p(k) and defined as a fraction of nodes that have k number
of links in the network. This function can be interpreted as the probability that a
uniformly randomly selected node in the network has degree k.

Figure 1 (left) shows the degree distribution of ER and SER networks for various
values of p and a. In the ER model, links between nodes are randomly distributed,
generating a normal degree distribution (Ducruet and Beauguitte 2013). The degree
distribution of the SER model for the range of exponent values 1\ a B 2 also
resembles a normal distribution, but with significantly different moments. Also it
appears that as the exponent a increases, the normal curves for SER model grow
taller. As discussed in Sect. 2, an important property of real-world social networks
is having heavy-tailed degree distributions. We know that an ER network does not
exhibit heavy-tailed degree distribution and, therefore, the SER model should show
similar behavior. However, the question of interest here is which one has the heavier
tail. To determine this, we compare the upper tail degree distribution of the SER
network with that of the non-spatial ER. The distribution of a random variable X is
said to have a heavy tail if:

Pr X[ x½ ) & x%a as x ! 1; a[ 0

To compare degree distributions in two networks, we compute the function
Pr[X[ x], called the complementary cumulative distribution function (CCDF;
Cioffi-Revilla 2014: chap. 6). If the resulting plot of one distribution falls above the
other, we may conclude that the upper one has a heavier tail than the lower. Figure 1
(right) shows parametric Pr[X[ x] functions corresponding to three different values
of connection probability p for ER and SER networks with different values of a.
Interestingly, the SER network produces heavier degree distributions with
decreasing values of a, meaning that nodes with high degree are more likely to

Fig. 1 Comparing degree distribution (left) and complementary cumulative density function or CCDF
(right) of ER and SER networks (GD = 0.8)
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exist in such spatial networks. We should have expected this because larger values
of a reduces the long-range connections between nodes, which in turn decreases the
degree of the hubs.

Next, we explore the effect of the exponent a and geographical density (GD) on
the properties of the SER network. Figure 2 plots nine network properties of the
SER network for different values of a and geographical density values. Results
show that increasing the exponent a increases the average path length, but decreases
mean, standard deviation, minimum, and maximum degree values in the SER
network. Interestingly, the value of a = 1.5 is a tipping point for the clustering
coefficient, so the coefficient decreases until a = 1.5, increasing afterward. On the
other hand, increasing GD increases clustering, network density, mean degree,
standard deviation of degree, transitivity, and assortativity, but decreases the
average path length in the SER network. The underlying explanation for these
results is that increasing the GD leads agents to locate closer together, which, in
turn, increases the likelihood that pairs of agents will connect.

So far we have only looked at averages from our simulation runs and have
reasoned based on visual inspection of plots. We now take a more detailed look at
the variances associated with different settings and examine at how much variance
can be attributed to variations in different parameters, based on analysis of variance
(ANOVA). We complement Fig. 2 averages of our statistics with Table 2, which
shows which proportion of overall variation can be attributed to different parameters
and parameter interactions, along with the p value associated with each factor. From
the table, we can conclude that most of the variations in the statistics of the SER
network can be explained by the exponent a. The only cases where GD has greater

Fig. 2 Effect of exponent a and geographic density (GD) on properties of the SER network (Circle: GD
= 0.3; Square: GD = 0.5; Triangle: GD = 0.8)
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effect are the clustering coefficient and assortativity. The results also illustrate a
significant difference between the various levels of exponent a and GD on average
values of all network properties.

4.2 Properties of the SWS network

In this section, we first consider Kleinberg’s (2000) version of the SWS model,
where the rewiring probability p is the same as in the original WS model, however,
the probability of a new connection between two nodes is a function of their
geographical distance d, as in Eq. (1). We consider 1000 nodes for both networks,
each node connecting to its 20 nearest neighbors (k = 20), and geographical density
is set to GD = 0.8. With respect to node degree, both WS and SWS-1 models
produce the same degree distribution, since the main parameter affecting the shape
of the distribution is the rewiring probability p, which in this case is the same for
both models. Other network properties of the SWS-1 are reported and compared
with the WS model in Table 3. Results show that the SWS-1 network has higher
clustering coefficient, assortativity, transitivity, and minimum degree compared to
the WS network, especially for low values of p. On the other hand, the maximum
and standard deviation of degree tend to be lower in SWS-1 model.

The more interesting scenario, however, is when we define the rewiring
probability as a function of distance between nodes (i.e., let p(d) = C2dij

a). The
intuition here is that if nodes are already close in the geographical space, we want
them to be rewired with less probability than those that are geographically distant.
Figure 3 (left) illustrates the degree distribution of the WS and SWS-2 networks for
various values of rewiring probability p and distance exponent a. We know that the
degree distribution of the WS network does not match most real-world networks
very well (Newman 2003b). It seems that incorporating the spatial proximity of
individuals into the construction of the small-world network does not fundamentally
change its degree distribution; it only makes it taller. Results show that for all three
values of a the corresponding degree distribution is similar to that of WS for

Table 2 Analysis of variance for SER network properties

Sources of variation in proportions of sum of squares (p value)

GD a GD 9 a

Clustering coefficient 0.56 (0.00) 0.36 (0.00) 0.00 (0.00)

Mean degree 0.08 (0.00) 0.89 (0.00) 0.02 (0.00)

Std. degree 0.09 (0.00) 0.9 (0.00) 0.01 (0.00)

Min degree 0.06 (0.00) 0.85 (0.00) 0.06 (0.00)

Max degree 0.08 (0.00) 0.88 (0.00) 0.02 (0.00)

Assortativity 0.23 (0.00) 0.04 (0.002) 0.02 (0.17)

Transitivity 0.41 (0.00) 0.42 (0.00) 0.00 (0.00)

Density 0.08 (0.00) 0.88 (0.00) 0.03 (0.00)

Average path 0.33 (0.00) 0.59 (0.00) 0.03 (0.00)
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rewiring probability p = 0.01. Moreover, it appears that increasing the value of
exponent a slightly makes the distribution thinner.

In order to compare the tails of the degree distributions on WS and SWS-2
networks and examine the effect of rewiring probability and distance exponent a on
tails, we plot the CCDF of both networks for various values of their parameters in
Fig. 3 (right), as before. We can see that the WS for p = 0.01 and p = 0.1 provide
upper and lower bounds of the CCDF respectively. In other words, the WS for
p = 0.01 has the heaviest tail, while SWS-2 with a = 2 has a CCDF very close to it.
Another interesting observation for the SWS-2 model is that as the distance
exponent a grows, the corresponding degree distributions have heavier tails,
meaning that larger hubs are more likely to exist for greater values of a. One
explanation could be that SWS model produces less extreme-size hubs because
nearby hubs with lower degree might be more attractive than far hubs with higher
degree.

Table 3 Comparing network properties in WS and SWS-1 networks

p = 0.001 p = 0.01 p = 0.1

WS SWS-1 WS SWS-1 WS SWS-1

Mean degree 20 20 20 20 20 20

Clustering coefficient 0.69 0.71 0.61 0.69 0.52 0.52

Density 0.02 0.02 0.02 0.02 0.02 0.02

Average path 4.96 11.16 3.58 4.93 3.22 3.22

Assortativity -0.0002 0.0014 -0.004 -0.0014 -0.006 -0.01

Transitivity 0.69 0.71 0.6 0.69 0.52 0.52

Min degree 17.8 19 16.6 17.96 15.52 15.24

Max degree 22.12 21.04 23.92 22.08 25 24.92

Std. degree 0.44 0.14 0.98 0.44 1.37 1.38

Note a = 1.5, GD = 0.8, C1 = 0.02

Fig. 3 Comparing degree frequency distribution (left) and CCDF (right) in WS and SWS-2 networks
(GD = 0.8)
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To examine the effect of the distance exponent a and GD on SWS-2 network
properties, we compute the statistics for various values of a and GD, as shown in
Fig. 4. Results show that clustering, average path length, minimum degree, and
transitivity increase with a, but the maximum and standard deviation of degree
decreases as a increases. In the case of assortativity, results show a tipping value for
a. We also observe that increasing GD decreases clustering, average path length,
transitivity, and assortativity. However, the standard deviation of degree decreases
with GD. The ANOVA test shows that most of the variation in network properties
can be attributed to the decay exponent a (Table 4). For example, in the case of
clustering, average path length, and transitivity, ANOVA results show that a causes
90, 80, and 90 percent of the variations, respectively. Moreover, Table 4 shows a
significant difference between various levels of exponent a and GD on average
values of all network properties except for assortativity.

4.3 Properties of the SBA network

Our proposed SBA network and the original BA model have the parameter m in
common (i.e., the number of links to build from a new node to prior nodes). As a
result, we can compare network statistics across the two models and directly
examine the effect of adding geography to the model. We compute the network
properties for both models and report them in Table 5. Results show that the SBA
model always produces networks with equal or higher clustering, assortativity, and
transitivity. On the other hand, the SBA network has a lower maximum degree,

Fig. 4 Effect of exponent a and geographic density GD on properties of the SWS-2 network (Circle: GD
= 0.3; Square: GD = 0.5; Triangle: GD = 0.8)
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minimum degree, and standard deviation of degree. It also has a longer average path
length at all corresponding m values compared to the original BA network.

The most important feature of the BA model is that it produces a network with
power law degree distribution. Accordingly, an interesting question to investigate is
how this degree distribution changes when long-range connections are penalized by
d-a. To illustrate this, we plot the degree distribution of the SBA model for various
values of m and distance exponent a on double logarithmic scales in Fig. 5 (left) and
compare it with the degree distribution in the original BA model. The straight line
pattern of data resembles that of a power law distribution. However, we still need to
test alternative distributions to find the one that best fits the data, because the tails of
the data in Fig. 5 (left) are noisy. Another way to identify a power law is to plot the
complementary cumulative distribution function on double logarithmic scales to see
if a straight line is observed. If a set of values obeys a power law with exponent a,
its CCDF also follows a power law, but with exponent a-1 in a log–log plot (see,
e.g., Newman 2005; Cioffi-Revilla 2014, Chap. 6).

Table 4 Analysis of variance for SWS-2 network properties

Sources of variation in proportions of sum of squares (p value)

GD a GD 9 a

Clustering coefficient 0.08 (0.00) 0.9 (0.00) 0.02 (0.00)

Std. degree 0.1 (0.00) 0.9 (0.00) 0.00 (0.00)

Min degree 0.08 (0.00) 0.6 (0.00) 0.009 (0.00)

Max degree 0.08 (0.00) 0.70 (0.00) 0.00 (0.00)

Assortativity 0.00 (0.40) 0.00 (0.12) 0.00 (0.97)

Transitivity 0.09 (0.00) 0.89 (0.00) 0.01 (0.00)

Density 0.00 (0.00) 0.00 (0.00) 0.00 (0.35)

Average path 0.14 (0.00) 0.8 (0.00) 0.04 (0.00)

Table 5 Comparing the network properties in the BA and SBA models

m = 1 m = 3 m = 5

BA SBA BA SBA BA SBA

Mean degree 1.99 1.99 5.98 5.98 9.95 9.95

Clustering coefficient 0.0 0.0 0.03 0.05 0.04 0.06

Density 0.002 0.002 0.006 0.006 0.01 0.01

Average path 6.94 7.43 3.48 3.6 2.97 3.17

Assortativity -0.12 -0.11 -0.08 -0.05 -0.06 -0.02

Transitivity 0.0 0.0 0.017 0.03 0.03 0.04

Min degree 1 1.1 2.9 3 4.71 5

Max degree 57 30 98 46 124 58

Std. degree 3.18 2.28 7.04 4.96 10.28 7.13

Note a = 1.5, GD = 0.8, N = 1000
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The log–log plot of the CCDFs in Fig. 5 (right) show excellent fits to a power law
fit in the original BA network. However, in case of SBA networks with different
values of decay exponent a, the corresponding CCDF plots behave like a power law
mostly for small values of k, dropping more steeply for larger k, which can suggest a
power law with exponential cut-off as the best fit. The fact that the BA lies above all
other CCDF curves implies that it has heavier tail. The reason can be found in
Table 5, where results show that the BA model has a significantly higher maximum
degree than the SBA model for all parameter combinations. This means that BA
model produces one or more extreme-size hub(s) that are not produced by a SBA
network. On the other hand, the SBA model has significantly less standard deviation

Fig. 5 Comparing degree frequency distribution and associated CCDF in BA and SBA networks for
various values of a and m (N = 10,000 and GD = 0.8)
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of degree compared to the BA model, meaning that differences between hubs and
regular nodes are (on average) less pronounced in the SBA model.

To statistically test the goodness of fit, we compare the fit of the power law with
other competing distributions. In doing so, we follow Clauset et al. (2009) in using
the likelihood ratio test proposed by Vuong (1989). The test computes the logarithm
of the ratio of the likelihoods (LR) or normalized log-likelihood ratio (NLR) of the
data under two alternative distributions. Results for various combinations of m and a
are reported in Table 6. We consider lognormal, exponential, and power law with
exponential cut-off as competing distributions. Positive (negative) values of the
NLR or LR indicate that a power law is a better (worse) fit compared to alternative
distributions. Therefore, if the associated p value is less than a predefined threshold
(e.g., 0.1), we reject the model with the worse fit. However, if the p value is large,
we are not able to choose among competing distributions.

The more detailed properties of the SBA model and the effect of the exponent a
and m are demonstrated in Fig. 6. These results show that clustering, transitivity,
standard deviation of degree, and maximum degree all increase with distance
exponent a. Network assortativity is the only feature that decreases with increasing
a. Average path is nonlinear and concave in a. Network density, minimum degree,
and mean degree are constant for various values of a.

The effect of GD is also shown in Fig. 6. Results show that clustering, standard
deviation of degree, transitivity, and maximum degree decrease as GD grows.
However, average path length and assortativity increase with GD. ANOVA test
results indicate that most of the variation in network properties in the SBA network
can be attributed to m (Table 7). For example, 98 percent and 67 percent of
variations in average path length and clustering coefficient are due to the role of
m. By contrast, GD has the least effect on variations. The results also show that
differences between values of m are significant at the 0.01 level for all network

Table 6 Testing a power law against other models for degree distributions in SBA networks

Lognormal Exponential Power law with exponential
cut-off

Best fit

NLR p NLR p LR p

m = 1

a = 1 -0.21 0.65 2.39 0.38 -0.49 0.32 Power law

a = 1.5 -0.36 0.22 20.51 0.003 4.73 0.99 Power law

a = 2 -0.90 0.03 35.83 2.17 0.014 0.86 Lognormal

m = 3

a = 1 -1.68 0.22 84.73 6.72 -6.15 0.0004 Power law with exp. cut-off

a = 1.5 -0.21 0.68 73.10 1.02 -1.03 0.15 Power law

a = 2 -0.01 0.91 47.31 0.000 -0.38 0.37 Power law

m = 5

a = 1 -2.86 0.11 493.3 2.51 -2.64 0.02 Power law with exp. cut-off

a = 1.5 -0.65 0.45 18.75 0.01 -3.78 0.006 Power law with exp. cut-off

a = 2 -0.51 0.51 80.8 1.04 39 0.37 Power law
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properties (p value = 0.00), except for the minimum degree, where p value = 0.52.
Finally, differences between values of a are significant at the 0.01 level
(p value\0.01) for all network statistics except the mean, minimum degree, and
density, where the p value[0.01. Although most interactions between factors are
also significant at the 1 percent significance level, since the interaction effects are
too low, it is safe to say that there no/little interdependence between the factors.

4.4 Analyzing the effect of spatial clustering

So far we have assumed that the points representing spatial coordinates of nodes are
uniformly distributed across space. However, in the real-world, it is rare to find a
region where the population is uniformly distributed. Rather, population is dense in
large cities and sparse in rural areas (Bretagnolle and Pumain 2010). In other words,
population is spatially clustered in any given country, with cities being the cluster
centers. In this sense, it is rewarding to analyze the extent to which having
geographically clustered points affects the behavior and properties of our proposed
spatial social networks. In doing so, we construct a set of n Gaussian-distributed
clusters with random variances. Moreover, we consider different levels of GD,
which controls vacant spaces between points and clusters. Figure 7 illustrates how
spatially clustered data points differ from the case of uniformly distributed and the
effect of GD.

Figure 8 compares the degree distribution of the SER with those of an SER with
clustered embedded coordinates (SER-C). Results show that having spatially
clustered points shifts the peak of the distribution to the left, tending toward a

Fig. 6 Effect of exponent a and geographic density GD on properties of the SBA network (m = 5)
(Circle: GD = 0.3; Square: GD = 0.5; Triangle: GD = 0.8)
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lognormal distribution. This is especially the case for n = 3 and n = 5. In addition,
results show that increasing the value of GD produces heavier tailed distributions,
but does not change the overall distribution type. Figure 8 also shows that SER-C
results generate a large number of nodes with zero degree, especially for low values
of GD, consistent with expectations. With respect to other network properties,
results in Table 8 show that incorporating clustered coordinates into the SER model
improves most properties. More specifically, spatial clustering increases network
clustering, mean degree, density, assortativity, and transitivity. However, it
significantly enhances the standard deviation of degree. Increasing the number of
clusters n does not significantly induce variation in network properties.

We compute and plot the degree distribution of the SWS-2 and SWS with
clustered embedded coordinates (SWS-C) in Fig. 9, which shows the degree
distribution of the SWS-C network for three different values of GD and number of
clusters n. In all three plots, the SWS-C network shows a taller distribution than in
the SWS-2 network, and the number of clusters n and GD show no significant effect
on the shape of the distributions. In terms of other network properties, the SWS-C
network has a higher average path length compared to the SWS-2 network, and for

Fig. 7 Uniform versus clustered Points for different geographical densities

Fig. 8 Degree distributions of the SER-C and SER models for different values of n and GD (N = 1000,
a = 1.5)
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n = 5 and n = 7, it has higher assortativity. Similar to the SER-C model, increasing
the number of clusters in geographical space does not affect network properties
(Table 9).

Finally, we plot the degree distribution and CCDF of the Spatial Barabási-Albert
(SBA) network and SBA with clustered embedded coordinates (SBA-C) in Fig. 10.
As in previous cases, we consider three values of GD and the number of clusters
n. The log–log plot of the degree distributions resembles the power law distribution.
However, due to noisy tails in all three cases, it is best to examine the CCDF plots.
Results show that, for higher values of degree, the upper tail of the CCDF plots
slightly diverges from a straight line, suggesting that alternative distributions should
be considered. To statistically test for the best fit, we compute the NLR, LR, and
corresponding p values, as reported in Table 10. Results show that, as the number of
clusters increases, the distribution diverges from a perfect power law; at
approximately n = 7 an exponential cut-off becomes a better fit. With respect to
other network properties of interest, results show that the SBA-C network has
significantly higher clustering coefficients and maximum degree compared to the

Table 8 Comparing network
properties in SER and SER-C
networks

Note a = 1.5, GD = 0.8

SER SER-C

n = 3 n = 5 n = 7

Mean degree 6.04 9.59 9.53 9.54

Clustering coefficient 0.2 0.26 0.27 0.27

Density 0.006 0.009 0.009 0.009

Average path N.A. N.A. N.A. N.A.

Assortativity 0.22 0.58 0.59 0.58

Transitivity 0.2 0.32 0.32 0.32

Min degree 0 0 0 0

Max degree 15.44 28.56 28.08 28.8

Std. degree 2.53 5.85 5.84 5.84

Fig. 9 Degree distributions of the SWS-C and SWS-2 models for different values of n and GD
(N = 1000, a = 1.5)
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SBA network (Table 11). The number of clusters is not a source of variation in
SBA-C’s network properties, as reported earlier.

5 Discussion and conclusion

Location is a key feature of agents that has been empirically proven to have
significant impact on the probability of connections. Availability of large data sets
of human interactions, such as mobile calls, text messages, and social media data,
among many others, has enabled researchers to discover regularities in human social
networks, including the strong correlation of individuals’ geography and their
friendship and interaction patterns. These findings, along with the need for spatial

Table 9 Comparing network
properties in SWS-2 and SWS-C
networks

Note a = 1.5, GD = 0.8

SWS-2 SWS-C

n = 3 n = 5 n = 7

Mean degree 20 20 20 20

Clustering coefficient 0.68 0.7 0.7 0.7

Density 0.02 0.02 0.02 0.02

Average path 4.65 6.96 7.55 7.6

Assortativity 0.001 0.001 0.0035 0.004

Transitivity 0.68 0.7 0.7 0.7

Min degree 17.72 18.28 18.48 18.68

Max degree 22.32 21.56 21.24 21.28

Std. degree 0.51 0.27 0.24 0.23

Fig. 10 Degree distributions in SBA-C and SBA models for different values of n and GD (N = 1000,
a = 1.5, m = 5)
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analysis of computational results, have motivated the development of spatial social
network generation algorithms.

Based on classical principles and theory of human and social geography (e.g.,
inverse-square interaction laws), combined with network science models, we
proposed a class of spatial social network generation algorithms. Our proposed
network construction methods build on and extend the three well-known ER, WS,
and BA graphs. Assuming that the probability of connection between two agents
decays with their distance as a power law (i.e., as p(d) * d-a with 1\ a B 2), we
penalized long-range spatial interactions, consistent with empirically validated
social theory. That is, we allow a pair of agents to be connected with probability
proportional to the inverse of the distance between them on an m 9 m Cartesian
space. To explore the network characteristics in each model, we used measures that
account for empirical regularities found in real-word social networks. We also
compared our proposed models with their associated originals to assess the effect of
geographic space on each models’ structural features.

As a general finding, our results demonstrated that including a geographic
distance selection mechanism in the formation of networks enhances clustering
coefficient, assortativity, and transitivity in all three classic networks (Table 12)

Table 10 Testing a Power Law against other Distributions for the SBA-C Networks

Lognormal Exponential Power Law with exponential
cut-off

Best Fit

NLR p NLR p LR p

SBA -0.84 0.21 59.62 1.03 -0.16 0.56 Power law

SBA-C

n = 3 0.01 0.37 71.00 5.63 -0.20 0.51 Power law

n = 5 -0.45 0.55 8.25 0.12 -0.95 0.16 Power law

n = 7 0.003 0.92 119.22 0.001 -1.62 0.07 Power law with exp. cut-off

Note a = 1.5, GD = 0.8, m = 5

Table 11 Comparing Network
Properties in SBA and SBA-C
Networks

* a = 1.5, GD = 0.8, m = 5

SBA SBA-C

n = 3 n = 5 n = 7

Mean degree 9.74 9.95 9.95 9.95

Clustering coefficient 0.02 0.06 0.06 0.06

Density 0.01 0.01 0.01 0.01

Average path 3.17 3.26 3.26 3.27

Assortativity 0.05 0.007 0.005 0.008

Transitivity 0.02 0.05 0.05 0.055

Min degree 5 4.28 3.96 4.04

Max degree 58 71.44 71.52 71.2

Std. degree 7.13 7.14 7.17 7.08
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which are empirically grounded desired characteristics. One common way to
compute the clustering coefficient is to measure the fraction of triads with a
complete triangle (Newman 2003b; Cioffi-Revilla 2014). In fact, incorporating the
spatial proximity in the network formation model increase the probability of finding
triangles in networks. This happens because if node A is connected to node B and
node B is connected to node C, this implies that the probability that nodes A and
C are geographically close to node B is high, which in turn implies that the
probability that nodes A and C are spatially close is high. As a result, and due to the
importance of distance in creating links, the probability that A and C are connected
is increased in spatial networks. Assortativity is higher in spatial social networks,
indicating that the probability that hubs are connected is increased when distance is
taken into account in the formation of social networks. This has immediate
implication for networks security properties, such as vulnerability, reliability, and
resilience, as these and others have been shown to be sensitive to the network
properties (e.g., Modarres et al. 2010; Myers 2010; Newman 2003a).

Numerical analysis of the spatial Erdös-Rényi (SER) network reveals that,
similar to the original ER model, it generates a normal degree distribution, but with
much lower peaks (i.e., platykurtic). Moreover, increasing the distance-decay
exponent a while holding geographic density constant causes the degree distribution
to become taller and thinner (leptokurtic). In other words, for lower values of a the
SER model has heavier tails. Pairwise comparison of the ER and SER models is not
possible because they have different parameters, but, for considered values of p and
distance exponent a, the ER with p = 0.05 has degree distribution with the heaviest
tail. Graphical sensitivity analysis and analysis of variance showed that both
geographic density and the distance-decay exponent a have statistically significant
effects on average values of all measured network properties, with most of the
variations attributed to the distance exponent a.

With respect to the spatial Watts-Strogatz (SWS) model, we analyzed two
different cases: (1) the rewiring probability p is fixed and the connection probability
is a function of distance between nodes (SWS-1); and (2) the rewiring probability is
a function of distance between nodes, decaying as a power law, and the probability
of connection between nodes is uniformly distributed (SWS-2). Results showed that
the SWS-1 network has the same degree distribution to that of the WS network, but
with greater clustering, assortativity, and average path length for small values of
p. For the SWS-2 network we found that as the exponent a grows, the degree
distribution becomes taller (leptokurtic), meaning a decrease in the standard
deviation of the degree distribution. Moreover, the degree distribution of the SWS
network has heavier tails for higher values of a, meaning that larger size hubs are
more likely to exist in spatial networks. The ANOVA test revealed significant
differences between values of geographical density and exponent a on all measured
network characteristics at the 0.05 significance level, except for the assortativity,
with most of the variations explained by a.

The proposed SBA model and the original BA model have in common the
parameter m, so we could compare their properties. Numerical analysis showed that
the spatial model always produces networks with lower clustering, maximum
degree, standard deviation of degree, and minimum degree. However, the SBA has
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longer average path length and higher assortativity compared to BA model at
corresponding m values. For the values of a that we analyzed (i.e. 1\ a B 2,
grounded in recent empirical findings about real-world social networks), the degree
distribution of the SBA model tends to deviate from a perfect power law. That is, in
some cases, especially for lower values of exponent a, we observe a crossover from
power law behavior to exponential behavior. The tail analysis of degree
distributions showed that for small values of k, the SBA model has heavier tail
than the original BA model. However, for medium and large value of k, the original
BA model has heavier tails. This is because the SBA model has significantly less
maximum degree compared with the BA model. Moreover, the ANOVA test
revealed that m and geographic density have the most and least effect on network
characteristics, respectively. For future use of the proposed network models,
Table 13 should be consulted regarding the effect of distance exponent a and
geographical density on network properties.

We analyzed an empirically relevant case where agent coordinates are clustered
in space. This is an important extension of our analysis because in most of real-
world cases the spatial distribution of the individuals is clustered at multiple
regional scales such as counties and countries. Our results demonstrated that, in the
presence of spatially clustered coordinates, the SER network shows greater
clustering, assortativity, and transitivity. Moreover, its degree distribution tilts
toward the lognormal distribution as the number of zero degree agent-nodes (social
isolates) significantly increases. In the SWS network, results showed taller
(leptokurtic) degree distributions, higher assortativity, and average path length.
Finally, having clustered coordinates increases the clustering coefficient and
transitivity in the SBA network. It also imposes some deviations from the perfect
power law for large values of degrees, making the power law with exponential cut-
off the better fit for degree distribution.

The exponential truncation we found may have critical effects on the dynamics of
the system, especially for domains in which nodes with large degrees have
important implications such as opinion dynamics and radicalization (Alizadeh et al.
2015). Our finding of mechanisms leading to an exponential truncation indicates
that the number of major hubs will be smaller than predicted for scale-free networks
where degree distribution follows a perfect power law. This finding has immediate
implications for understanding and managing onset and spread of epidemics and
social contagion.

Finally, the proposed spatial network models offer a simple way to the agent-
based modelling community to model the geography of individuals wherever it is
desired and relevant. Our class of network generation algorithms enables the
modelers to effectively generate a network that simultaneously captures the spatial
proximity of individuals and the desired topology. The advantage of our models is
that the geography and topology are linked together and not separate. This would
make the researchers able to study the bipartite networks of physical space and any
arbitrary conceptualizations of social networks (e.g. friends, liking, conversations,
etc.) as well.
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