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NUCLEAR DETERRENCE
INTRODUCTION

After the second world war, the United States’
monopoly of nuclear weapons permitted it to attempt
to deter aggression by announcing a policy of ''massive
retaliation" against any nation which might attack
the U. S. or its allies. As the Soviet nuclear capa-
bility expanded during the 1950's, the effectiveness
of this policy as a deterrent came into question. It
was pointed out (notably by A. Wohlstetter [1]) that
a well-coordinated surprise nuclear attack upon U.S.
airbases could conceivably reduce the retaliatory
force to a point where the residual retaliation might
be risked by a determincd or desperatc aggressor.

This development prompted emphasis on maintaining
forces which could withstand an all-out Soviet attack
and still retain the ability to visit overwhelming
retaliation upon the aggressor's population centers.
The retaliatory attack was to be sufficient to assure
the destruction of the aggressor state as a viable
society [2], so the policy became known as an assured
destruction policy.

To assure partial invulnerability, part of the
manned bomber force was kept airborne at all times
and another part was maintained in a state of readiness
te take off on short notice. The bomber force was
supplemented by missiles carried aboard nuclear sub-
marines and by land-based missiles emplaced in under-
ground reinforced concrete "silos". Each of these
three forces was to be able to carry alone the burden
of deterrence should a surprise technological development
render the other two vulnerable to attack.



The effectiveness of a retaliatory force as a
deterrent depends, of course, on how much of it can
be destroyed by a surprise attack and hence on the
forces a potential aggressor can commit to such

an attack. During the past two decades Sovietr nuclear
forces have increased rapidly. At least two cxplana-
tions can be advanced for this increase. It might be

that the Soviet leaders are seeking the ability to
reduce the U.S. deterrent force so greatly by a sur-
prise attack that they would feel they could survive
the subsequent retaliation. (This is not to say they
intend to make a surprise attack; the agbility to do

so could suffice to gain concessions.) On the other
hand, it might be that they merely wish to have the
same sort of deterrent against the U.S. which the U.S.
holds against them. 1In the former case, if the U.S.
attempts to maintain its deterrent what are the relative
economic burdens on the two parties in the resulting
arms race? In the latter case, does the mutual attempt
at deterrence lead to an unlimited arms race or does

it settle down to an equilibrium in which each party

is satisfied that the other is effectively deterred?

In recent years, other nations than the U.S. and the
Soviet Union have begun to develop nuclear weapons.
These weapons may eventually come to plav a significant
role in the strategic calculations of the great powers.
What will be their effect? These are the questions we
address in this module. I[f we pose the problem in
complete generality, allowing for all types of forces
and the possibility of cach type attaching or being
attacked by all the others, the formulation becomes
overwhelmingly complex., We will avoid this by concen-
trating solely on land based missile forces. Because
of the policy that each of the forces should be.capable
of serving alone as a deterrent [2] and because of

the current relative inefficiency of attacking land

based missles from bombers and submarines, this

[ 2



restricted problem is more relevant than it might at
first seem, even though it does not account for the

full range of interactions which must be considered
in force planning.

1. A LINEAR MODEL

In casual talk one might say something like,
"Suppose it takes two Soviet missiles, on the average,
to destroy one U.S. missile." The first model we
present is based on a general "exchange ratio" concept
of this type.

Suppose n different parties are attempting to
maintain mutual deterrence. It is presumed that
alliance between these parties may occur in any
fashion. (A dependable long-term alliance can be
regarded as a single party.) Each party must be
prepared to deter not only each one of the others
individually but the most threatening possible alliance
of all other parties against it. Suppose party i
has My missiles and that it takes Pyg of party j's
missiles, "on the average' to destroy one of party
i's missiles. Then the fraction

" The Number of Missiles j has
D The Number of Missiles ) needs
It to Destroy One of i's Missiles

| #

(1)

is the number of i's missiles that j is likely to be
able to destroy. Accordingly, the sum

(2) jii Mj/pji

is the number of missiles that i would be likely to

lose in a coordinated attack by all the other parties.

Suppose also that party i judges that the expec-
tation of his having ry missiles operational for



retaliation after attack would suffice to deter such
an attack. Then party i will feel secure if

(3) M. - 2_ lepji 2> ri

j#i
If party i wants to minimize the number of missiles
(and hence, presumably, costs) the equality will hold.
We can thus find the minimal mutual deterrence posture
by solving the system of simultaneous equations

(4) M, - jii Mj/pji =T, : ol 0 (07 S P
Note, however, that this will be meaningful only if
all the solutions are positive. If some solution Mi
turns out to be negative, the conditions (3) cannot
be met in reality and attempting to achieve mutual
deterrence on these terms will result in an unlimited
arms race.

It is instructive to write out specific solutions

for the two party case (n = 2). We have from (4)

Ml = M2/021 - Fl

(5)
“ Mglpys v My = Ty
Solving this system yields

g Pr2lz Y GiParky
¥ P12P2y - 1

(6)
Parfa * Parfyaly
P21°12 - 1

MZ'

Thus in this model stable mutual deterrence can exist
provided P12P27 > 1; in particular if it takes at
least one missile, "on the average", to destroy a
missile. This might seem a reasonable condition for
missiles carrying one warhead. (Silos are spaced far



enough apart to avoid the possibility of more than one
being damaged by a single warhead.) The introduction
of multiple independent warheads on each missile (MIRV),
however, makes the assumption questionable since the
independent warheads from a single missile can attack
several silos.

Some further insight can be gained by considering
the totally symmetric case in which each party has
the same technology and desires so that o .. = p, r.=rm,

i
M, =M for all i and j. We then have from (4)

M- (n-1) M/fp =T
and hence
(7 M=opl'f(p+1-mn).

Thus we see that in this case there can be no stable
mutual deterrence unless p + 1 > n. For the three
party case, stability cannot exist unless p > 2,

i.e. it takes more than two missiles to destroy a
single missile. Since the technology available in

the early 1970's was widely believed to yield p < 2,
we would conclude from this model that an attempt by
three equal parties to achieve mutual deterrence using
current technology would lead to an infinite arms race.
Thus the development of MIRV and the development of
many nuclear powers appear in this model to threaten
even a theoretical possibility of stability. We will
see in the next section that although these develop-
ments may indeed be escalatory, their effect is vastly
overestimated by the model we have presented in this
section.

Exercises

1.1 Verify that the non-symmetric two party solution yields

the symmetric sclution in case p12 = 02], T] = Fz.



1.2 In a two-party situation, suppose only one party is
following a deterrent policy. The other party is building
missiles at a rate Hz(t) = kt. Find M (t), the minimal
deterrent force the first party must hold as a function
of time, assuming M, (0) = T,. Draw a graph of Hl(t} if
k = 100 missiles per year, plz =Py = 2 and F‘ = 200.

1.3 For the symmetric case it is not unreasonable to presume
that the required retaliatory force is proportional to
the number of parties to be deterred; I' = (n = Ily-'
Assuming this and p = 4, compute M/y as a function of n
for n =2, 3, 4. (Note that it becomes infinite for
n=25.)

2. A NONLINEAR MODEL

The model presented above embodies a fallacy in
its very formulation. The concept of an exchange ratio
"on the average', although it appears acceptable in
verbal "analysis'", turns out to be technically meaning-
less unless we specify the size of forces in advance.
It is fallacious to treat as a 'constant" a quantity
which depends on the sizes of the forces when we
attempt to compute the required force sizes. A more
careful and exact probabilistic aealysis is required.
Let us suppose that each of the M; missiles of party
j carries p. independently targeted warheads, each
having probability pij of destroying one of party i's
Mi missiles in its silo if it is targeted on it. If
Mi divides u.M. evenly, then each of Mi missiles would
be targeted by u-M-/Mi of j's warheads. [If this division
is not even, the leftover warheads will be distributed
over silos chosen at random from among the Mi. (It
can be proved that this is the most effective attack,
but the mathematics is more complicated than we require



for this module. The theorem needed is given in
[4].) The probability of 2 particular missile being
chosen for the residual targeting is thus just the
fractional part of u.M./Mi. For convenience, let
us introduce the notation [x] for the integer part
of x (the greatest integer i x) and <x> for the
fractional part of x, <x> = - [x]. Then each of
the M; missiles is def1n1tely targeted by [u M /M, ]
warheads and the probability of a partlcular m15511e
being targeted and destroyed by one of the leftover
warheads is <u H /M >p. ij Each warhead's attack
on a missile can be regarded as an independent trial,
so the probability of a particular missile surviving
the attack by party j's missiles is

M. /M.
O Pij][uJ 5/ ;]

Thus the condition that the expected number of missiles

(1 3 <l-|ij/Mi>piJ] .

surviving attack by a coalition of all other parties
should exceed ry is

[u.M./M.]

J ) 1 =
) (1 <uij/Mi>pij}z_l". =

(8) M. T (1- i

EFERRRES
Two conclusions are immediately apparent. First,
stable mutual deterrence postures always exist. Second,
no particular parity or ratio between the missiles
held by the various parties is necessary. Mutual
deterrence postures exist for any specified ratio.
To sce these results, consider any arbitrary collection
replaced by their positive multiples aMl, aMz, aMs,...,
uMn. the terms u'Mj/Mi appearing in (&) remain unchanged,
so the left side of the inequality is increased by
precisely the factor a. Thus, by choosing o sufficiently
large, the forces aMl, aMz, GMS""’ aM will constitute
mutual deterrence postures for all the partles.



The problem of solving the minimal deterrence
problem obtained by setting the inequalities (8) to
equality is quite complicated and algorithms for its
solution are discussed in detail in [3]. Here we
will only consider the symmetric case, which is easily
solved and which is quite indicative of the general
behavior of the solutions.

Let Mi = M, Pi; = P» "j = u. We might also
postulate that the retaliatory force required is
proportional to the number of parties to be deterred:

Pi = (H'I)Y.

For this symmetric case (8) becomes

(9) M(L-p) DV 5 (- 1y

so minimal deterrence is achieved by

(10) M= (n-1)y(1-p) (1w

I1f we regard M as a function of n we can write this as

. n-1
(11) ﬁg—“l - (n- 1)[@] .

Suppose for instance that in deterrence between two
equal parties each requires M(2) = 1000 missiles in
order that a retaliatory force y = 200 should survive
an all-out attack by the other, then M(2)/y = 5. The
introduction of a third equal party, with each attempt-
ing to deter the other two, would require

MI3Y _ s gene

300 - 2-(5)° = 50 ,
so each of the three parties would require 10,000
missiles rather than the 1000 required for the two
party case. For four parties we have

MC4) . 3.(5)Y = 375



so each party would need 75,000 missiles. We see that
even though it is not theoretically impossible for

more than two parties to establish mutual deterrence,
the demands on resources posed by such a task are
excessive and may be practically impossible. It is
interesting to speculate that this practical difficulty
may necessitate formation of the sort of stable long-
term alliances which we noted earlier could be treated
as a single party for planning purposes.

An alternative situation of interest is that in
which a smaller third power acquires a relatively
small nuclear capability consisting of M3 missiles
without attempting to hold a deterrent posture against
the two major powers. This third power could collude
with either of the two major powers in an attack on
the other and it might attempt to wrest some advantage
from this ability to influence the "balance of power."
By how much must the major powers increase their forces
to neutralize this effect? Again we assume equality
of the major powers; u3M3 <M= Ml = Mz and write P3
for P13 = Py3- The mutual deterrence equations for
parties 1 and 2 against the possible alliance becomes

i [u Mo /M]
(12) M(1-p)" (1-p5) (1-pg<usMs/M>) = T.

Since we are presuming usM; < M, we have [u3M3/M] =103
<u3M3/M> = u3M3/M and hence

% sl
(13) M=T(1-p) + p3u3M3 ¥

Thus it suffices for each of the major powers merely

to increase its missile forces by an amount somewhat

less than the total number of warheads mounted by the
third power in order to neutralize any influence the

third power may attempt to exercise.



Exercises

= r' = =
2 2, 5 Fz 200,

Pig = Pyy = t, suppose that party 2 insists on always

2. For the symmetric case My = o#

having twice as many missiles as party 1: H2 = 2H1.
Find the minimal deterrence posture satisfying this

additional constraint.

2.2 Verify that for the two party case Pig = Pyy = i,
My =M, =1, T, =100, T, = 150, the least cost solution

is H] = 220, Hz = 260.

2.3 In a two party situation, suppose that only one party is
following a deterrent policy. The other party is build-
ing missiles at a constant rate Hz(t] = kt. Draw a
graph of H1{t} if k = 100 missiles per year, Pyy = Py = L.

M, = u, =1, I, = 200, assuming H1(0) =r

1 2

2.4  Assuming p = 1/8, u = 2, compute M{(n)/y for n =2, 3, 4, 5

1 1

for the symmetric n-party situation.

3. RELATIONSHIP BETWEEN THE TWO MODELS

At first glance, there would appear to be little
relationship between the two models we have discussed.
In fact we will show that the linear model is an
approximation to the nonlinear model which holds
when the probabilities pij are very small, i.e. when
the missiles are virtually invulnerable to onec another.
Thus the linear model was not an inanpropriafte one to
use in the late 1950's and early 1960's when this was

generally believed to be the case.

Suppose x is a very small quantity. By the
binomial theorem we know that '

(14) (1-0" = 1-mx+ 2By 4 )™,



If x is very small, its higher powers are even
smaller. (If x = 0.1, x? = 0.01, x? = 0.001.) Thus
terms involving these higher powers can be neglected
in the expression above and we can write approximately

(15) (1 -x)™ =1 - mx .

Let us apply this observation to the nonlinear
deterrence inequality (8) assuming pij to be so small
that terms involving its higher powers can be neglected.
That is, let us use (15) with x = pij and m = [uij/Mi]
to replace the expression
[u-M./M.]
3 J i3
(1 pij)
in (8) by the expression
- M_/M_]P. .
1 [uJ J/ 53 %
When this is done, (8) becomes
M. T (1-[p.M./M.]p.. -<u.M./M.>p. . ..
(16) L jﬁt [ugMs /M1, 5) (1< Mo /Miopy ) > Ty
In computing the product we may further eliminate any
term involving more than one factor Pijo since such
terms will also be negligible. Eliminating such

terms, we obtain

7 L - M./M.]p.. - <y M./M.>p. .
an M. [1 jEiI"J 3/Mi1 Py j;i ugM M >0, 5P

Since [x] + <x> = x, this is

M. f1- § (u.M./M)p.. >T
1[ jEi J 3 17713
(18)
M. - E u.M.p.. > r
i i, 4308
which has precisely the form of (3) if the exchange
ratios pji are taken to be I/ujpij, i.e, each of j's
missiles destroys "on the average" pjpij of i's,
11



which is quite in accord with our expectations about
what these ratios should be. The linear model is
thus a fairly good approximation in restricted cir-
cumstances. The difficulties arise when one attempts
to apply the model outside these circumstances.

Then it can be quite misleading, and one must resort
to the more complicated nonlinear model to gain
insight into the problem. In applying ''reasonable
seeming” linear models of any process, one must
always be wary of drawing conclusions which involve
quantities becoming very large. (Questions of
stability usually fall in this category.) Almost
invariably the linear model must be replaced by a
more complicated nonlinear model to deal successfully
with such questions.

Exercises

3.1 Complete the solution given by the linear model to the
two party case for Pyy = Py = 2, F1 = 100, rz = 150
and compare it with the solutions to the nonlinear

model verified in Exercise 2.2. What do you conclude?

3.2 Compare the results of Exercise 1.2 and 2.3. What do

you conclude?

3.3 Compare the results of Exercise 1.3 and 2.4. What do you
conclude?

4. ON THE USE OF AVERAGE VALUES

In all of the computations above we have dealt with
mean values. The criterion for deterrence was that the
expected Tetaliatory force should be adequate. The
number of missiles actually surviving attack would be
a random variable. There remains, therefore, the
question of how much confidence can be placed in the

12
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)z F
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(18)
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results. Perhaps an average value is misleading and
one must have greater forces to have sufficient
confidence that the required retaliatory forces would
survive. One can compute, for any case, the increase
in force size required to provide any desired level
of confidence in having the specified retaliatory
force survive. In practical cases the force increase
required for 95% confidence has always been found to
be substantially less than 20% of the forces indicated
by the mean calculations. The increase for 80%
confidence is usually substantially below 10%. Thus
the use of mean values in our calculations is not
grossly misleading and only a moderate upward adjust-
ment of force sizes is required if the parties demand
high confidence in the survival of an adequate deter-
rent. To see how such calculations are done, let us
consider the case of two equal parties seeking a
minimal mutual deterrent. We have seen that the
probability of a missile surviving an all-out attack
in this case is P = (1 - p)u. The probability of
exactly N out of M surviving is given by the binomial
distribution.

(19) NTT%%NTT pN(p - pyM-N

and the probability of at least [ surviving is

M
M! N M-N
(20) Nzr NTOERT P (1-P) ;

This could easily be computed for small M, but for
MP(1 - P) large, it is more convenient to use the
normal approximation to the binomial distribution
and consult tables of the error function.

Exercises

k.1 If MP(1-P) is much greater than 1 then the sum

13



M

M! N M-N
by P" (1-P)
N=T THCENE
is closely approximated by

oo

-
sk [ e ™ /2 dx = E(K)
T

where K = (I - MP - 1/2)//MP{1-P) .
(The error in this approximation is less than 0.03 for
P=1/8 and M > 1000.)

Given that
E(-0.84) = 0.8
E(-1.28) = 0.9
E(-1.65) = 0.95,

compute the excess number of missiles (over that indicated
by the mean value computation) required respectively for
0.8, 0.9, and 0.95 confidence in having a retaliatory
force of T = 250 survive attack in a two-party symmetric
case where

a) p=1/2, p=3
b) p=3/4, u=3,

(The nonlinear model is to be used, of course.)
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6. ANSWERS TO EXERCISES

woe B2 000 . plpw 3T . BT
a% -1 (p+1)(e-1) p ol

- =
Ml = ,1+r~|2/921 Iy +kt/021

= 200 + 50t
MZ = 100¢t.
M_po(n-1) _ 4(n-1)
Y p+1-n 5=
M 4
n=2,? 3- .33
- M _8 _
n =3, e ] 4
» M _ 12
n-"l? T" 12
M . cq -
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(]

M
2
5

1 N,
M;(1 - p) (1 - p<uﬁ;>) >T
%
a7 M
M,y (1 - p) (1 - p<uﬁ;>] > T,

If M, = 2”1' w=2,p=1/2, T =200 this becomes

M (1 - %) > 200
2M (1 - %) > 200
My > 3200, M; > 200.

Thus the solution is M] = 3200, Mz = 6400.

M M
2| _ [260] . 2, . 40 _ 2
{“H‘I] [220} Loo<eg> = 335 ° 11

M M
2 . [220] . i, 220 11
["ﬁ} [R'ﬁ] 0, <ug> = 760 * 13
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M,
[+ «
M1 - pyp) [1 - Plz‘“ﬁ;’] gl
Let n = [100t/M1].

Ml[l - R - n]] = 2" . 200
My

n = n .
Ml(l + 7} 2 200 + 50t.
Initially, n = 0 so

Ml = 200 + 50t

until 100t = M1 = 200 + 50t (i.e., at t = 4), when

n =1, then

_ 800 + 100t
B = e

until 100t = 2M1 = 1229~§—£Qg£ (i.e., at t = 16), when
n = 2, then
My = 400 + 25t

and so forth.

Yo a-na-p i
; -u(n-1)
= (- 1D
n-1
= (- DG
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=
~
i

2L - 1.306
'ﬂyi)- = 3.412
’i(,ri'-l‘- 6.685
"-‘ifs-lu 11.641.

The linear model yields

_ 2:150 + 4-100 _ 700 _
M, = R = 3= = 238 1/3
- 2-100 + 4-150 _ 800 _
Mz 3 = =5 266 2/3.
The nonlinear model yielded M1 = 220, Mz = 260.

The linear model gives a fair approximation for
p small and small total numbers of weapons, but
it overestimates the requirement for weapons.

The two models agree out to t = 4, wherc M, = MZ = 100
Beyond that point the linear model overestimates

the required Ml‘ The overestimation progressively
increases as MZ increases and eventually becomes

vast. According to the linear model, this arms

race costs the would-be agressor twice as much
annually as the defender. According to the non-
linear model, the defender has an ever increasing
advantage. The cost ratio becomes 3:1 after 4

years, 4:1 after 16 years, etc.

The linear model again overestimates the required
forces in all cases. The error is not bad for

n = 2, but it becomes progressively worse as the
number of parties increases.



r'? + M?P? + - 2TMP - T + MP = MP(1 - P)K?

o] =

PPMZ + (P - 2FP - P(1 - P)K})M + T2 - T + % = 0
r . K2(1-P) T 1
M = 5 ¥ 1 + 1+ ———= o
¥ A K2(1-P) RE
The nominal value of M given by the nonlinear
model is F/[l-p]u = % . Thus the excess required

to provide confidence is

1\ =
AM A 5P

K> (1-P) [1 ./ ar - 2 | . 1
2 v K2 (1-P)

For 4.1a we have p = (%}. u=23 P= (1_p]“ = % s
I = 250. Thus

ar~1=x2-%{1+ 1+ ']-4
7K?

3.5 (k2 + / K"+ 1141K?) - 4.

For 0.8 confidence, K = -0.84

AM(0.8) = 98.
Since M = % = 2000, the increase is roughly 5%,
from 2000 to 2098.

For 0.9 confidence, K = -1.28; for 0.95, K = -1.65.

We can thus compute
AM(0.9) = 153 AM(0.95) = 201.

For 4.1b we again have T = 250, but p = 3/4, u =
P = (1-p) = 1/64. Thus

3
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am = 8 [K’ . ,/;1 o B2 K’] - 32

= 31.5 [x’ + /K% + 1014K?2 ] - 32 .

In this case the nominal M is 64,000 and we have
AM(0.8) = 833, AM(0.9) = 1305, AM(0.95) = 1711.
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